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Kernel Fusion, Thread and Block Coarsening (Contd.) 

 

Hi, welcome back to the lecture series on GPU architectures and programming so, if you 

remember in the last lecture we were discussing thread coarsening as a possible optimization 

for GPU programs. 

(Refer Slide Time: 00:37) 

 

And in a short summary, we just discussed that what are the good and bad things of 

coarsening and we just tried to motivate why beyond a point coarsening threads too much 

may not be of help and in that regard, we define; we are trying to define rather that what is 

the notion of coarsening factor so essentially, by factor I mean that how much work I am 

going to allocate part thread over and above a base line implementation. 

 

So, in that way a coarsening factor is the number of times I am going to replicate the body of 

a thread that means, the number of times I am increasing the part thread activity with respect 

to a base line implementation and what is interesting is to figure out what is the best 

performance, what is the coarsening factor that gives the best performing, performance 

depending on the program and on the hardware right. 

 



So, it is not something constant, it very much is a function of what program is under 

consideration and what is the target GPU and of course, I mean it is easy to understand why 

that would happen because as we have discussed earlier that whether coarsening is going to 

help beyond a point or not depends on the amount of architectural resources that are available 

in the hardware. 

 

And up to some point, doing coarsening is fine that you are increasing thread activity without 

decreasing the occupancy of the hardware at some point, you are going to hurt the occupancy 

of the hardware but still coarsening may be good because you are utilizing the hardware 

resources more efficiently because each coarsen thread is making more efficient use of the 

hardware. 

 

But beyond that point it may happen that the occupancy reduces so much that you lose out on 

the effective parallelism over the lifetime of the program and whatever is the best coarsening 

factor is I mean, deciding that statically is; I mean is one way that you can do a static program 

analysis to figure out a possible coarsening factor, it may not be the best but you can figure 

out a possible coarsening factor. 

 

And also the other way would be that you try different coarsening factors and it is really an 

intricate problem because the architecture will have lot of parameters, the program can have 

lot of dependences, so figuring out the perfect coarsening factor, you can try doing that using 

a static analysis and you can without any guarantee that it is basically, the best coarsening 

factor. 

 

The alternative can be that you try out different possible coarsening factors, profile, each of 

the implementations, different coarsen implementations in the architecture, profile them, 

profile each of the coarsening factors for multiple possible input runs and create some speed-

up analysis and figure out what is working best for you. Now, the static analysis based 

methods which can give you a good coarsening factor would be sound ones. 

 

That means, they would give you, they will tell that well this coarsening is feasible to 

implement without hurting the functional equivalence of the program but it may not be able 

to say that whether that indeed is a best possible coarsening or not. 
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So, the different types of coarsening just like we discussed different types of techniques of 

fusion like what are the different possible ways in which you can implement fusion among 

GPU kernels, similar to that there are different possible ways in which you can coarsen a 

GPU kernel and basically, you have to increase the parts thread activity now, that can be done 

at the thread level or at the block level. 

 

So, when we say that you are doing a thread level coarsening that means, increased 

granularity within a single block of thread, so essentially your coarsening threads by giving 

them more activity part thread but those are all activities inside a single thread block, the 

other could be that you do block level coarsening that is you increase the granularity of 

coarsening across multiple blocks. 

 

That means, when you thicken or coarsen a thread, you give it more activity not from the 

original block of thread but more activity from other blocks of thread. I hope this is clear let 

me just reiterate, so when I do thread level coarsening, I will coarsen a thread by giving it 

more activity but that activity was originally inside this specific thread block, inside who; 

which I am talking about the threads. 

 

When I say block level coarsening that means, I am coarsening each of the threads inside the 

thread block by giving them extra activity which is not the activity of the original thread 

block but from some other thread block. 
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So, let us first discuss thread level coarsening in detail, so when I am applying the 

coarsening, I am applying it at the level of individual threads and so essentially, I am 

combining 2 or more threads from the same block, activities of 2 or more threads I am 

delegating it to 1 thread inside the block. So, each thread block now performs the same 

amount of work. 

 

Because I have not delegated work from other thread blocks to threads inside this thread 

block, since I have not done that so now, each thread block performs the same amount of 

work but it is able to achieve that with coarsen threads which are fewer in number so, I am 

now decreasing the threads per block while doing the same functionality of the thread block 

okay. 

 

But when we do this, each of these trimming multiprocessors have their limitations as we 

have discussed earlier in terms of the registers, the total register file size inside the SM that 

amount of shared memory inside this and concurrently, runnable thread blocks like how 

many concurrent thread contexts that SM can hold, right so, these are the 2 limiting factors 

and that actually limits the total amount of; so total number of effective threads that will 

really be launched in the SM after I thicken or coarsen the threads. 

 

Just to make the point clear so, every SM has a upper bound on the total number of 

concurrently runnable thread blocks right, now it also has an upper bound on the size of the 

register in the shared memory. So, when I coarsen the threads, I increase the part thread 



demand of registers and share memory, so due to that the SM maybe also getting further 

limited in terms of the actual thread blocks that it can run concurrently. 

 

And this hardware constraints will actually I mean, this is something we have already 

discussed, these hardware constraints will actually decide on how many threads I can really 

run that will affect the occupancy which in turn will give the bound on how much really I 

should apply the amount of thread level coarsening. 
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So, the next important thing is what is the stride length across which I should do the 

coarsening right, so this acts as an offset between the IDs of threads that are to be combined 

so, when I am combining 2 threads what should be the offset between them, right? Now, the 

maximum stride when I allow, so first of all we are still talking about thread level coarsening 

but when I am coarsening threads, it is not necessary that I just coarsen tid with the amount of 

activities for the original tid and the tid plus 1. 

 

But rather I am trying to coarsen the thread with tid, the thread ID tid with activities of 

original threads with a thread IDs being tid and tid plus s, where s is a stride length right. So, 

this amount or this stride length can have some limits, first of all what should be the 

maximum stride length; it should be less than the number of threads per block in the 

dimension where the coarsening is applied divided by the coarsening factor. 

 

So, let us try and understand what it means so, let us consider that this is the total thread 

arrangement and I am using a coarsening factor C equal to 2 right, so effectively I am going 



to use these many threads right, I mean half of this number of threads okay, so maybe yeah, 

so let us say I am going to use half of this number of threads and I am doing the coarsening in 

this dimension. 

 

And so, when I am choosing the stride length so, the number of threads per block in this 

dimension, let it be some X right, so divide by 2 right, so that would be the maximum number 

of threads; thread IDs in these dimension in the coarsen kernel, right. So, the maximum stride 

length for the threads has to be less than this; that is the limiting factor why because; of 

course, if it goes beyond these, then I have a problem. 

 

Because the thread seating at the boundary of this coarsening boundary, they those thread IDs 

plus the stride value would shoot beyond the original thread block boundary, right. So, I if 

you just consider the number of threads per block in any specific dimension, in which we are 

applying the coarsening, so let us say this is the dimension we are applying the coarsening, 

you divided by the coarsening ding factor. 

 

So, that would give you the total arrangement of threads that would be there in the coarsen 

kernel. Now, when I am talking about that stride length, I hope this is clear the stride length 

has to be limited by the original dimension in that original threads per block number in that 

dimension divided by the coarsening factor because if I consider a stride length, which is 

greater than this, then what happens? 

 

If the thread which has the tid is sitting in this boundary, those plus the stride length would go 

beyond the thread dimension in this, in the original arrangement of the data, right. So, the 

maximum stride length will be limited by this equation but at the same time, what should be 

the minimum stride length? Now, just to make sure, that we do not want to disturb the 

original memory behaviour of the program right. 

 

So, let us say originally, I had a few tid’s which are doing accents of  some data sequentially, 

so that when these thread IDs they get packed inside a warp perform coalesced access of the 

data from this memory, I do not want to disturb this behaviour right, so let us understand that 

if I make one thread, each of the threads in this warp, if I am trying to coarsen them by 

making this thread ID to the job of accessing this thread ID followed by the next let us say. 



 

Again, the other thread ID followed by the next and so on so forth, then I may possibly lose 

out on the memory coalescing. So, when I am trying to coarsen each of the threads, I would 

like to have the minimum stride length to be greater than the warp size, so that whatever is 

the behaviour of the threads inside the warp, they do not lose out on their coalesced memory 

accesses. 

 

But rather when the thread does its coarsened extra activity, it belongs to another separate 

coalesced global memory transaction, so those would belong to another separate global 

memory transaction like this. So, this is the original transaction of the threads, this other set 

of transactions were supposed to be let us say, this is one transaction, this is other transaction. 

I do not want to disturb this nice behaviour. 

 

So, if I just make the strides greater than the warp size, then essentially I am not disturbing 

the original memory coalescing, whereas if I do something like I am accessing for each 

thread ID, I am accessing consecutive locations, that does not make real sense, right because 

then in many cases it may happen that the original memory coalescing behaviour which was 

nicely distributed across the threads that may get into a problem. 

 

So, I hope with some examples you can actually work this out that why we would like to 

keep the stride length greater than the warp size. 
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So, with this as a motivation let us try to look at a coarsened version of our reduction kernel 

in fact, if you remember that in a reduction kernel whenever we are trying to do access, we 

are trying to ensure that the global memory transactions are not nicely coalesced and even the 

shared memory reads are nicely coalesced, right without any kind of shared memory bank 

conflict. 

 

So, we let us first go through this example, here we are trying to use a thread coarsening 

factor of 2 with the stride as 32 which is equal to the warp size now, this coarsening factor is 

dictating how many replicas of the local thread ID and global thread ID will be in the 

program, right. So, I hope this is clear so, we have to replicate this local and global thread IDs 

in the program, right. 

 

So, since we have chosen a coarsening factor of 2, we need 2 instances of local thread IDs to 

access 2 consecutive data, 2 possible data values for a given global thread ID right. So, let 

this tid be the local thread IDs and i is the global thread IDs right, so we will need 2 instances 

of both of them here so, we compute this tid 0 and tid 1, right. So, that would actually give us 

this different local thread IDs as you can see that the local; the tid 0 is a standard local thread 

ID inside the block. 

 

And we know this because we are just calculating the offset right, so we are just assuming 

that it is all in the; were coarsening in the X dimension here right, since were coarsening in 

the X dimension with this calculation we are finding out the offset in the local thread ID and 

then we are doing; since, we are choosing a stride of 32, so that would give me the second 

location from where I will try to do that thread level activity. 

 

And then I compute i0 and i1which tell me what is the global thread ID corresponding to this 

local thread IDs, right so, it is just that I know already what is the block, right so, with that 

block ID and all that I just will add tid 0 and tid 1, observe this multiplication factor of 2 in 

terms of the block dimension because now, the thing is I am going to access the 

corresponding data points and I am launching half of the threads. 

 

So, that means that I am going to have half; half the value of effective block dimension while 

defining the thread blocks, so in order to get the suitable access patterns for the corresponding 

locations in the data, I will have this multiplication factor by 2 here in the blocks, right. 
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So, with this we are able to compute the i0 and i1 the positions for which I am going to do the 

global memory accesses for the respective data points. Now, so this is basically the reduction 

kernel with thread coarsening, so what we are trying to do is that first each of these thread ID; 

these global memory locations i0 and i1, we are just checking whether their valid locations 

for this kernel and then we are bringing them into a shared memory. 

 

And once we bring them into the shared memory, we are doing the usual reduction step right, 

now so as you can see this is the loop for the usual reduction step like we have discussed 

earlier, right. Now, just observe one simple thing like just like we have done it here since, we 

have a coarsening factor of 2, so we will have half of the original number of threads in the X 

dimension, so that is why wherever I have block dimension is getting multiplied by 2, right. 

 

Similarly, here it is getting multiplied by 2, this divided by 2 is the original code semantics 

for the reduction kernel, right and then inside we have the original code that you just do an 

addition in shared memory with a stride of s but now you are doing it for, so this is basically 

this strides of which of the for loop in reduction whereas, our choice of stride for coarsening 

is 32 which is already hard coded here right, just to avoid the confusion. 

 

So, this s is the effective strides we divided getting divided by 2 in each iteration of the 

standard reduction kernel right, inside the for loop instead of having one if statement of a 

standard reduction kernel we have, these are coarsen kernel so, we have 2 if statements for 2 



different locations right that is why we have this common. That in the, for loop, the s data is 

updated by both the tid’s, so by both tid 0 and tid 1, right. 
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And when we do the right, only one of these can be 0 right, so the condition for the second 

the other will not never be true right, so whichever is 0 for that we will be doing the output 

data calculation, right I mean, loading back to the global data. So, with this we have an 

example of coarsening by 2 for the standard reduction kernel. 
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Now, let us just have a discussion on block level coarsening, so as we saw in thread level 

coarsening, we were doing the coarsening inside the same block and while for coarsening, we 

are making a choice of the stride, the stride should be that inside the coarsen kernel, the 

threads do not access locations beyond the thread block size; reduce thread block size so, it 



was the original block dimension in that coarsening dimension divided by the coarsening 

factor that was the maximum possible stride. 

 

And the minimum stride that was definitely greater than the warp size, so that any original 

memory access coalescing pattern that was a good part of the original kernel should never get 

disturbed that is why we were not; we are always choosing a stride which was greater than 

the stride length now, coming to the other part which is the block level coarsening. 

 

Now, we are I mean, what we are really going to do is; that we will essentially combine 

multiple thread blocks to one block that means, when I coarsen a thread, the thread should be 

doing its original activity additionally, it will be doing activity from some other thread from 

another block, right. So, effectively in the original thread level coarsening, what was 

happening is the thread number of threads per block was getting reduced due to that 

coarsened threads. 

 

But here what will happen is the number of threads per block will remain unchanged but we 

will have the number of; effective number of blocks getting reduced, right. So, each block 

still has to handle and increase workload as you can see in the original case in the thread level 

coarsening, the power block activity remains same number of threads per block reduced 

threads per block got coarsened with original thread original thread blocks activities. 

 

Here, the thread block sizes remains same, the number of; total number of blocks reduces by 

the coarsening factor since, the thread block sizes remain same and the threads gets coarsened 

so, each block handles the increased workload. Coming to resource requirements per block in 

terms of register and shared memory usage, such resource requirements will typically 

increase. 

 

So, when we talk about resource requirements per block, then in terms of registers and shared 

memory usage, these requirements typically increase.  
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So, what is the choice of stride length, when we are talking about block level coarsening? So, 

now we are going to discuss the stride in terms of blocks, this acts as an offset between the 

IDs of blocks that are to be merged, right as you can understand now, we are talking about 

bringing activities from different blocks together. So, if I am trying to draw a picture 

originally, when I was doing thread level coarsening, so if this was the original block, I was 

kind of coarsening threads inside the block by let us say this were the original warps for the 

threads. 

 

So, now when I coarsen the thread, I am delegating this thread its original activity along with 

the activity here at a stride length right, so by delegating activities at a stride length together 

to the original thread, we were coarsening and creating smaller thread blocks, right but now 

when we are doing block level coarsening, so let us say I have a thread block let us say, this 

is 1 thread block; thread block 1, this is thread block 2, like that. 

 

So, when I coarsen, I coarsen one thread here with activities from threads in the other block 

right, now here when I do this, my stride length s is 1, now this is not general, right. So 

suppose, so here I am not going to threads but I am drawing thread blocks right, so this is one 

thread block, this is a thread level coarsening. So, suppose these are 4 thread blocks and I 

pick up a thread from here and I give it activity of the its original activity and some activity 

from the thread here. 

 

And similarly, for other threads here getting the activities from this that thread block 3, since 

they are sitting at a distance of 2, so here the definition of stride length is the stride across 



blocks, right. So, with this we can just say that the maximum stride length can be discussed in 

a similar way but now at the grid level, right. So, if I am coarsening in a specific dimension, 

so then the maximum stride length would be limited by the number of blocks in the 

dimension in which coarsening is applied divided by the coarsening factor. 

 

So, just to observe the difference between thread level and block level coarsening, so when 

we are doing thread level coarsening, the maximum stride length was limited by number of 

threads in the dimension of the thread block, where coarsening was applied divided by the 

coarsening factor of the thread block. In this case, the maximum stride length is less than 

equal to the number of thread blocks in the dimension, number of thread blocks inside the 

grid of the kernel in that dimension where coarsening is applied divided by the coarsening 

factor, right. 

 

So, if I say that in this dimension I am applying and the coarsening factor is 2 so, I will be 

merging this, right and so I am; so, let us say there are 4 thread blocks here and the 

coarsening factor is 2, so maximum stride length is less than equal to 2 and when I operate 

with s equal to 2, I am operating at the maximum stride line possible, right and then we have 

the idea of minimum stride length. 

 

Now, of course that would be 1 because by definition of block level coarsening, I have to 

pick up threads, thread activity from another block, the nearest would be the next block, so 

the stride is greater than or equal to 1. Now, since the blocks we are now using the thread 

blocks for different thread blocks for selecting threads, so try doing have no influence on 

memory coalescing as the memory access pattern within the blocks. 

 

Or whatever is original memory access pattern inside the block that is always preserved, I 

mean it is quite easy to understand because when you are forming warps, you are forming 

warps with threads from inside a block, right and since you are coarsening across blocks, the 

original warps they are packing their memory access patterns, their memory coalescing 

whatever was there in as a warp level activity, as a warp level coalescing due to global 

memory transactions, they do not really change. 
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So, let us take an example of block level coarsening, so here your local thread IDs remain 

unchanged, the coarsening factor dictates how many replicas of the global thread ID will be 

there in the program, so observe the difference; earlier you replicated the global, local thread 

IDs and then you actually, replicated the global thread IDs but now, your local thread ID is 

same, you are using. 

 

The reason the local thread ID is same is that the local thread ID gives you a specific offset 

inside the block, right earlier, you were trying to access 2 different thread level activity inside 

a single block, so that would mean different possible offsets inside the single block, so you 

had computed 2 different local thread IDs and of course, their corresponding global thread 

IDs. 

 

But now, your offset will remain same but for the same offset, you will be accessing different 

blocks so, for the same offset you are computing 2 different global thread IDs using 2 

different blocks. Considering here that the stride is 1 and the coarsening factor is 2, since the 

coarsening factor is 2 in the X dimension, so you are multiplying block IDx, block Dim x; the 

block dimension x by 2. 

 

And then you are going to take another thread at the same offset from the adjoining block, so 

the original block dimension by 2 times block IDx that same thing here, you are applying to 

the next block, so twice of block IDx in that dimension plus 1, right the adjoining block, in 

that block you go to the thread ID with the same offset. So, since we are operating at one 

stride length, so the thread should be separated by one block dimension dot x value, right. 



 

So, maybe with this introduction to the block level coarsening example, we will end this 

lecture and in the next lecture, we will go into further details, thank you.  


