
GPU Architectures and Programming

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology – Kharagpur

Lecture 37

Kernel Fusion, Thread and Block Coarsening (Contd.)

(Refer Slide Time: 00:30)

Hi, welcome back to the lectures on GPU Architectures and Programming. If you just recall, in

the last lecture, we started with optimization that is how to fuse multiple kernels together and we

covered the idea of inner thread fusion, one possible way to do the fusion of two kernels, and we

figured out what is the relative advantage and disadvantage of doing inner thread fusion, when it

is applicable and all that.

With that background, we will just move to the next possible way of doing fusion, which is inner

block fusion. So the idea of inner thread fusion was very simple. We were just increasing the part

thread activity, right, by making the thread do work for two or maybe some multiple data points.

So if you just look into the example that we had.

(Refer Slide Time: 01:19)

So this was our sample program for inner thread fusion. We applied it on independent kernels in

two cases, one was same number of blocks and same number of threads per block and then we

said that okay, let us allow it to have different number of blocks for the two kernels while we

keep the number of threads per block same and then we generalize the concept.

So essentially we define these two operations that for the fused kernel, the number of threads

would be the max of the original number of threads per block and original kernel in the number

of blocks would again be the max of the total number of blocks in the two kernels, right and we

made each of the threads when they are launched for the fused kernel to perform the activities of

both the original kernels.

(Refer Slide Time: 02:11)

So this was the sample code. So ideally these two lines were the activities of kernel 1 and this

line was the activity of kernel 2. Now in the fused kernel, they are both together or part of a

single thread activity, based on whether they satisfy the requirements of whether they are

actually varied operations for both of the kernels or not. Now coming here, we take different

stands.

What we do is, okay, we do not fuse the kernels at that granularity of threads, but we start

looking into the fusion at the granularity of a block. So what we do? If you are given two

threads, you increase the block size of a fused kernel and you say that okay my number of

threads in the block should be such that some of them will be doing the activity for kernel 1and

some of the threads in the block, we will be doing the activity for kernel 2.

So considering that these shaded areas represent activities for the individual kernels, when I am

fusing them, this is my space containing the different launch threads and this granularity is

showing the blocks now in the new fused kernel, where essentially this represents the original

block size for k1 or kernel 1 and this is for k2, kernel 2 and they together form the new block for

the fused kernel.

So we will just compute a global thread ID here, sorry a local thread ID here, that is I do not

need to know what is the global thread ID, that is the ordering of the thread in a linearized

manner, but we are just interested in the offset or local thread ID with respect to this block, right.

So I just look at what is the local thread ID. So just to recall how do I compute the local thread

ID, so you will have the parameters dot x, dot y, dot z.

And you will like to use them with suitable multiplication factors in the x dimension, y

dimension and z dimension and compute local thread ID here. So my point is the local thread ID

does not represent the exact location of the thread in a linearized manner in the entire grid, but it

just represents the linearization of the threads with respect to their ordering inside one block,

right.

So with that, once we compute the local thread ID and then, we figure out that, okay what is the

position of this thread inside this block. We decide that okay, whether to put the local threads

with the threads with smaller local IDs to perform the activity for kernel 1 or kernel 2 and then

we write the code and we will put in the activities like this. Suppose for kernel 1 the number of

threads per block is x, right.

So for the fused kernel, we will just figure out whether the local thread ID is strictly less than this

x or not and accordingly we will make the thread to do the job for kernel 1. If the local thread ID

is equal to x or greater than x, then we will make it do the job for kernel 2. So these all things

will work. We will have the work here for kernel 1 and then we will have the work here for

kernel 2.

Just to note here and the difference earlier, the same thread was doing the job of both kernels. So

we are doing a thread level fusion, inner thread fusion, but here we are doing a block level

fusion. So we are adding more threads into the fused blocks, computing the local thread in the

block that is the relative position of the thread inside the block. Using this relative position or

local thread ID, we are computing whether this thread is supposed to do the activity of kernel 1

or kernel 2 and accordingly we are making it execute the code for kernel 1 or the code for kernel

2.

(Refer Slide Time: 06:33)

So if we just summarize it, essentially we will distribute the computation of two different kernels

among the threads in a single block. For independent kernels with small block size or threads per

block, this is the good idea. Why, because in case the sum of the threads per block for the kernels

add up and cross the upper bound, then I cannot really do any inner block fusion, right. So this is

a good idea for independent kernels with small block size, right.

So like earlier, let Sth,i represent the number of threads in a thread block and Sbk represents the

number of blocks in the kernel, where i is either 1 or 2 representing kernel 1 or kernel 2. Of

course, I can generalize I can have fusion of more than two kernels. So this is just a candidate

example where I am showing how I will fuse two kernels. So for the fused kernel, we will have

the total number of threads per block as the sum of these two.

Because I will delegate some of the threads to do the activity for kernel 1 and I will delegate

some of the threads to do the activity for kernel 2, like that and what should be the block size.

First of all, see I am widening the blocks. I am not interested in increasing the number of blocks.

So the block size should not be any sum or things like that, as is done with the number of

threads, but the block size is rather the maximum of the block size, sorry.

The number of blocks is rather the maximum of the number blocks for each of the two kernels.

So this seems I have to cover both the kernels. So my number of blocks has to be the max of

Sbk1 and Sbk2. So when does this not work in general? Of course, if I am trying to fuse two

kernels, where each of the kernels have lot of threads per block and the sum of Sth1 and Sth2 is

greater than 1024, the upper bound and maybe for the higher level of architecture that would be

2048.

So whatever is the upper bound for the GPU, if it cross the sum crosses the upper bound, then

this is not working. So apart from the issue with this upper bound, the other issue is that kernels

with synchronization statement, for them also the idea of inner block fusion would not be

suitable, simply for the reason that a synchronization statement will force synchronization for all

the threads in a block and it cannot work for a subset of threads, which will be part of a block.

(Refer Slide Time: 09:18)

So let us come to the example of doing inner block fusion of independent kernels. So we go back

to our original examples of k1 and k2, fine. So when we are fusing these two, as you can see that

for k1, the operation was sin a + cos b and we are storing the value in the buffer c. For k2, the

operation is log 2 and it is stored in the buffer e and when I am fusing them, all we will do is, we

will first define the number of threads and the number of threads per block, and the number of

blocks.

So we will follow the method we discussed earlier. So we will increase the block sizes now by

making it the sum of original block sizes and the number of blocks will simply be the maximum

of the original two. So the original two kernels are 6 blocks, so our fused kernel will also have 6

blocks and inside these blocks, I just have the double number of threads. Half of the threads are

doing the job for kernel 1 and half of the threads are doing the job for kernel 2, as simple as that.

And which threads are doing the job for which kernel is demarcated here using the different

colors. So the blue marked threads are doing the job for kernel 1, the yellow marked threads are

doing the job for kernel 2, which also is marked in yellow, like that.

(Refer Slide Time: 10:46)

So looking into the program example, so these are the unfused kernels, k1, this is the k2.

(Refer Slide Time: 10:56)

So when I am going to fuse these kernels using inner block fusion, so this is the pseudocode of

my fused kernel. So first thing I will do is, I will compute the block ID and then I will compute

the local thread ID. I will check whether this local thread ID. Again, let us remember, this is the

local thread ID, so the offset inside the block. This is not the global thread ID. So we will check

whether this local thread ID is less than the value at Sth1.

That would mean that this thread is supposed to do the job for kernel 1. Otherwise, we will check

whether it is inside the boundary of the total number of threads per block for the fused kernel,

because if this is not satisfied, then either the value is out of bound or the value is for the second

kernel’s work activity and accordingly the illustrative statement would fire.

Now let us just take another example. So here we have a bit of unbalance in terms of the number

of blocks. So kernel 1 has got four blocks, kernel 2 has got five blocks, sorry six blocks. Kernel 1

has two threads per block and kernel 2 has got three threads per block that would mean in the

fused kernel, we are going to have five threads per block and the number of blocks would be the

max, which is 6 here.

So again we are showing that which thread is going to do the job of which kernel. We are again

showing that using the highlighting scheme we discussed earlier. Observe that in the last block,

what is happening, essentially in this picture, remember one thing, although I am not showing the

arrows in the other blocks, I hope you understand that the threads are present here. So

essentially, this pattern is replicating here, here, here, like that.

So just to avoid any confusion, let me just say just like this, this entire pattern is also present

here, is present here, is present here, but observe that I am not going to have activity for kernel 1

here. So in this portion, there would be no activity for kernel 1. So what are you just have is only

the k2 threads. Here I have threads for everybody, similarly here, but here I do not have any

activity.

I hope you understand that as the data arrangement of the kernels become a bit different while

fusing them, we are introducing an absence of balance, because when these blocks are going to

execute, there will be unused blocks, when waps will be formed. So essentially, we will be losing

on the occupancy of the GPU and we will be not extracting that much parallelism. So whenever

we are working with blocks or threads, which are widely varying in terms of their arrangement

of data, the fusion operation may not be a good choice.

(Refer Slide Time: 14:22)

So how do I handle the fusion of independent kernels, if the data space size is different, like this.

Again, we have different number of threads per block here and also we have different number of

blocks here. For that, let us understand that the code is going to be a bit different. Now these are

the unfused kernels.

(Refer Slide Time: 14:50)

So when we are going to fuse these kernels, the first part is again same. So I have the block ID

and I am going to have the local thread ID computed using the thread IDx and block IDx

parameters, that is of course fine. The next thing is, first the thread has to figure out that what is

its block ID. Now why is this important? Because if the block ID is beyond the max, then of

course, there is nothing to be done.

So just to remember, Sbk here is the number of blocks for the fused kernel. Sth1 and Sth2 are the

threads per block setting of kernel 1 and kernel 2. Sbk1 and Sbk2 are the number of blocks for

kernel 1 and kernel 2. So we will figure out whether I am really having to do some valid

computation. So whether the block ID is less than Sbk. If so, then you get inside and figure out

whether you have some job. This thread is going to do some job for the kernel 1 or kernel 2.

So the check would be that the thread local ID, whether that local ID of the thread is less than

Sth1 and whether the block ID of the thread is less than Sbk1. Now just to understand that why

do I need this, because earlier if you see when we are doing, I am just hoping that to the code and

inner block fusion for kernels with identical data arrangement. So we just were computing the

local thread ID and we are checking whether the thread ID is going to do the work for k1 or k2.

But now it is different, because we have a varying amount of number of blocks. So I should not

only check for a given thread that whether it is part of its local thread ID is inside the data space

for kernel 1 or it is inside the data space, is beyond the data space for kernel 1, but inside the data

space for kernel 2. Only doing that check is not going to be valid. I additionally need to check

whether the block of the thread is a valid block ID for k1 or a valid block ID for k2.

For example, if the block ID is this one, 012, so then in the x dimension of course, then I can

understand that even if the thread ID is inside the thread boundary for kernel 1, kernel 1 does not

have any computation for this block ID. So we will have a check with Sth1 as well as Sbk1 and

then only do the computation for kernel 1. Otherwise, we know that okay there is no work for the

kernel 1 and we will just check whether there is inside the boundary for the total number of

threads per block. If so, there should be some activity for kernel 2.

(Refer Slide Time: 17:39)

Now, coming to some of the important points like, as we have discussed earlier that total number

of threads per block for fused kernel should not exceed the upper bound. We have to remember

this, because the threads per block upper boundary architecture dependent and so if you are

trying to write a parameterized code, like whether you should really have, I mean, suppose you

are trying to write a code, where you are trying to generate a fusion of the kernels based on the

GPU.

So you may first query the CUDA device property, figure out the allowed threads per block and

then you can do the sum of the setting of threads per block for k1 and k2 and then decide in the

runtime whether to execute a fused version of the kernel or not. So that is something which can

be done, like, I mean you can actually decide on what kind of threading should you use, whether

to fuse or not and also, this was the other important point we were discussing.

Like, CUDA does not support synchronization for partial threads in a block. So if we have synch

or synch thread statements in the reduction kernels, one of the components, then this kind of

fusion is not a good idea.

(Refer Slide Time: 18:59)

So moving aside into the other situation, which is inter block fusion, so we will need to first

understand what is this idea of inter block fusion. So the first thing we did was, I am just

recalling back. We increased part thread activity, so that was enough thread fusion. Then, we

increased the number of threads per block and decided whether the thread will do the job of

kernel 1 or do the job of kernel 2. That was inner block fusion. So I am fusing blocks.

Now we are saying that okay, let us not do that. Let us not fuse threads or let us not fuse blocks,

but let us just fuse the entire arrangements of blocks together and launch a kernel. So that just

means that you do not disturb the internal structure of the data space of kernel 1 or kernel 2. So

you just define a kernel with number of blocks being the sum of the original number of blocks of

k1 and the number of blocks for k2 and then, you let some of the blocks do the job for kernel 1

and some of the blocks to do the job for kernel 2.

So that is a much more coarse grain fusion. All you are doing is, you are just fusing at a coarser

grain. So essentially we are executing kernel 1 and kernel 2, but concurrently. Instead of not

dispatching kernel 1 followed by kernel 2, you are dispatching both of them together as a fused

kernel, but nothing changes in terms of their internal coding structure, you just delegate some of

the blocks to do the job for kernel 1 and then you delegate the rest of the blocks to do the job for

kernel 2.

So this is how it goes on. So you have the code for kernel 1, you have the code for kernel 2. You

just take the block ID, you check whether it is a valid block ID for kernel 1, it is inside the

number of blocks boundary for kernel 1, otherwise you execute kernel 2. So for kernel 1, you

have progress of threads like this. For kernel 2, you have another alternate progress of threads

like this and you have a boundary here and this is the entire grid of threads.

So this denotes, maybe a theoretical way for you to think, that this is x. So if you are on this side,

you are executing kernel 1, for example this side, you are executing kernel 2. Of course, this is a

2D picture. Overall, this would be the summary of inter block fusion. You distribute the

computation of two different kernels among different blocks, for independent kernels with

similar computation time, this is a good idea. Now this is important.

Why do you say, first of all, we understand the kernels have to be independent, otherwise as we

have discussed even in the case of inner thread fusion, if we are trying to fuse dependent kernels,

you have to bring in synch thread statements. So that, you exactly know when the threads for one

kernel finish, other kernel finish, and then you do some computation, so that is quite tricky thing

to do and it may not actually increase your parallelism that you can extract from the architecture.

So overall, we are always keeping ourselves restricted to the domain of independent kernels and

not going to think of using dependent kernels. Then also, we figured out that okay, the kernels

should be fusing, there should be suitable amount of load balancing, the data size or the data

arrangement should not be too much different. Again the similar thing will also hold here that we

will be fusing independent kernels, but the kernels, it should not have that they have this

similarity in terms of computation time.

Let us look at the situation why is it so. So then, while some of threads we are executing this, let

us kernel 1 is a heavy kernel and kernel 2 is a light weight kernel. So when you launch the

threads, the threads executing kernel to finish this much faster, but these threads are still waiting.

So that does not make sense then, because fusion of these threads are not making sense, because

you have got these threads, which are finished.

But waiting at the end of the execution, while the threads have not ended their execution, so

entire kernel is still live in the GPU, while some of the threads are still waiting. So then you are

really not exploring the parallelism in the nice way, because otherwise you could have done a

fusion of these workloads with some other workloads and that would have really led to a bit

more balanced execution, because overall what is your target?

Your target is to increase the occupancy of the GPU and keep on using all the architectural

elements, the compute units, the memory elements, the memory bandwidth in parallel as much

with as much high through put as possible. So if the independent kernels have similar

computation time, then this is a good idea, otherwise not. So for our case, let us understand what

should be our options for fusion.

So let Sthi represent the number of threads in a thread block and Sbki represent the number of

blocks in a kernel. So when I am fusing them, so Sth would be the maximum of Sth1 and Sth2.

So when I am fusing kernels, Sth would be the maximum of Sth1 and Sth2, because I am not

going to increase part thread activity. All I am doing is, I am increasing the number of blocks. So

the number of threads per block remains the same.

So it should just be the max of the originals and the number of blocks will be the sum of the

number of blocks in each of the constituent kernels. So again, just to remember that this is not a

good idea, if workload for different thread blocks differ a lot. That means, the kernels differ a lot

in terms of their computation ahead it. So there are nice interesting points to take. For example,

consider that kernel 1 is of compute intensive kernel, kernel 2 is a memory intensive kernel, is it

a good idea to fuse them?

These are foods for thought, you can actually look into, you can try simulating the example of

two such kernels. Consider induction kernel, consider some other kernel together, maybe a

convolution kernel and think whether fusing them makes sense or not.

(Refer Slide Time: 25:34)

Now if we come to the inter block fusion example, we are again restricting ourselves to the

original kernels. So we have the unfused versions on the left and the fused versions on the right.

So as you can see, again we are considering the general case, where we have unbalance in terms

of the number of threads per block and also unbalance in the terms of number of blocks, but now

things are quite easy, all we do is, we increase the number of blocks and we delegate some of the

blocks exclusively for activities of kernel 1.

And we delegate some of the blocks exclusively for the activities of kernel 2, so that would

mean, we will now have, since in the original kernel there were two threads per block k1 and

there were two threads per block for k2. In this fused kernel, we are having three sets per block

in general. So when we are fusing them, first of all you see that, this is essentially nothing but

k1’s working area. So all the threads belong to this area are going to do the job for k1.

The threads, which are belonging to this area, that means or correct me, the blocks which belong

to this area, they are resident threads. We will be doing exactly the computation for k2. So just to

recall that, all we are doing is we are figuring out the block ID. If the block IDs belong to k1’s

block IDs, then they are going to do the activities for k1. For example, if this is the block ID 00,

this is 01, like that, or this is 10, this is 11, those are the block IDs for which I will have k1

working.

For the other block IDs, I will have k2 working. So whatever was 00 here, if the block ID is

greater than k1’s block ID, just immediately greater than k1’s block ID, for that it should be this

block of k2 and so on, so forth. These are essentially nothing but k2’s blocks and these are

essentially nothing but k1’s block, but we discussed the point of loading balance in terms of the

computational natures of the kernels, whether k1 is a heavy kernel or k1 is a light kernel and k2

is a heavy kernel, but also observe the other point, we mentioned here.

So first was whether the kernels have similar computation time, that was the loading balance

issue, also observe that here when we are looking into this kernel k1, the number of threads per

block is now max, max of k1 and k2. So we have three threads for k1 as well as three threads for

block for k2. But since k1 is originally utilizing two threads, so this third when it is belonging to

the block IDs for k1 does not have much to do.

So these are just threads which are getting launched without any activity. So this is also a

wastage of thread, which is running in parallel or it has got no activity. So if we look into the

program example here, the fusion of independent kernels we are considering here. The fusion

style is inter block fusion, but we are considering for different data space size. So these are my

original unfused kernels.

So, of course, first we figure out what is the Sth and Sbk. So Sth is max and Sbk is sum. So we

also have similar comments for the previous kernels. They are kind of repeated here. So I am just

talking about them here, where it is a bit more complicated. Assume that Sth2 is greater than

Sth1 and Sbk2 is greater than Sbk1, of course, you have to write suitable programs for that.

(Refer Slide Time: 29:32)

Now when I have this fused kernel, first thing I will do is, I will figure out what is the block ID. I

will figure out what is the thread ID and I will also figure out the global thread ID and then we

will use the block ID first to figure out whether this thread belong to a block, which is for kernel

1 or kernel 2. So coming back here, again they will just repeat. So for the fused kernel, we have

figured out what is Sth and Sbk and we are just considering.

The code is written in such a way that we are assuming that Sth2 is greater than Sth1. So of

course, you can understand if for your second kernel, we are assuming that the number of threads

per block is larger. If it is not so, just you have to switch the variant of the code. I hope that is

clear. Here, the code is written assuming between k1 and k2, I have this property, otherwise your

code has to be changed. I thought you should be able to do that.

So first you check, whether the block ID is less than Sbk1. If so, then you get inside and check

that whether inside this block, you have some activity for the kernel 1 or not, because if so, you

just check whether the local thread ID is less than Sth1, then you execute this code. Do I have an

example where this will not execute? Yes, for example if you come here, consider a thread this

one. For this thread, the block ID is less than Sbk1. So it will execute kernel 1’s code.

But now, the thread ID is not less than Sth1. So it will fail the if case and it will not do any

activity. So for the threads with the previous IDs, they will get inside this part and do the kernel

1’s activities. Those which will fail this, they are the idle threads. They do not have anything to

do. Otherwise, we will just check whether the block ID is beyond Sbk1, but inside Sbk, then I

know that this thread belongs to kernel 2.

Again, we will just have the check whether it is less than Sth2, the thread ID. In that case, we

will delegate the activity for the sets to kernel 2’s activity. Now this inter block fusion also has

limitation. So what are the limitations? So workload of different thread blocks, consider that, I

mean, they may differ a lot. We are just considering the situation that suppose the workload of

different thread blocks will differ a lot, then this may not be a good idea.

So that was what we are speaking about, like if the kernels have different computation time and

also internally, if the threads per block differ a lot. If the threads per block differ a lot, then we

will have a lot of idle threads like this.

(Refer Slide Time: 32:33)

And if the activity of the block, the amount of all thread too differ a lot, then some of the thread

blocks will finish, but some of the thread blocks will wait and that will again create a load

imbalance. So if you just check here, for k1 and k2, for k1 I have this is a heavy kernel, because

all it is doing is, it is doing a square root of sin a + cos b in a part thread manner. So it is going to

actually use the special function units in the Sm.

Hope you remember the special function units, which we are actually going to do the transfer

data functions, the operations there. So they will actually compute the sin, the trigonometric

series, the mathematical expressions, the sin trigonometric series approximated for cos and

finally with the sum, it will implement Sqrd operation. So these are highly costly mathematical

operations, which are going on, whereas here I have a simple single cycle addition.

So these kernels are highly imbalanced with respect to their load. Due to this absence of

workload balancing, they are not good candidate for fusion, because fusing them I do not gain in

terms of concurrent execution of the kernels. Because one kernel finishes much faster, the blocks

from that kernel, the other kernel’s blocks are still executing. So there is not much of

concurrence.

(Refer Slide Time: 34:03)

So with this, we will end this lecture and in the next lecture, we will start with another

optimization technique, which is thread coarsening. Thank you for your attention.

