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Hi, so welcome back to the lectures on GPU architectures and programming so, in the last weeks 

we have been discussing more on memory access and (()) (00:35) issues and throughout the last 

few lectures while studying about warps and their scheduling, the divergence and how memory 

access is (()) (00:44), we have fundamentally understood the GPU architectures memory 

hierarchy and how it can be used to write optimised programs. 
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So, with this background, we are going to this topic of optimising reduction kernels that means, 

we will try to use this concept for some regular programming jobs, the primary one being 

reduction kernel. 

(Refer Slide Time: 01:07) 

 

So, these are the concepts which we have already covered and we will be trying to use those 

concepts here. 
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Now, before getting into reduction kernels, we have to understand that in general, while doing 

parallel programming what is important is to understand the concept of parallel patterns. Now, a 

parallel pattern would mean specific pattern of tasks that is a specific execution order and data 

access order of tasks which can be found occurring very frequently in some algorithm. So, if I 

have a specific sequence of computation and a specific sequence of data access that is occurring 

very, very frequently that is what we call as a pattern, if that has lot of parallel jobs embedded in 

the pattern in terms of computation or communication of data. 

 

It is the parallel pattern and we can see such parallel patterns occurring in very large number of 

computation intensive things we do, for example, matrix multiplication, for example convolution 

and also the reduction operations. 
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So, we will try and focus first on reduction operations, now typically what is the reduction 

operation? So, a reduction algorithm or reduction operation is primarily, the name of; it is the 

generic name for any operation that takes as input of vector and reduces it to a single value via 

some associative operation. For example, sum, min, max, as you can see that these are all 

associative operations. 

 

So, like suppose, I am computing the min, it is same as if I write; right so, these are generic name 

for operations which reduce a vector to a single value and for fundamental, the operation is the 

associative operation and these are operations which may visit large number of elements in the 

array, I mean so, you have lot of elements and you carry on these associative operation to get to 

the final value and fundamentally, we will need to visit every element in the array and perform 

the operation. 

 

Now, since and this interesting from the point of view when I have a very large array to work 

with, so a very large vector, lot of values and my final goal is to reduce it to a single value. Now, 

why is this interesting; because this is kind of a pathological work load, so in this case as you can 

see that there is not much of compute operations to do but significant amount of memory 

operations to do. 

 



And since, there is lot of memory operations involved, we feel that all most of the optimisations 

we have discussed earlier should have a role to play in case of reduction algorithms and that is 

what makes them interesting in this context. 
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So, we just start with the parallel sum some implementation, right so, you have a lot of numbers 

and you to sum them, if you have a sequential version, it is going to an order of n operation, if 

you are going to do a parallel version which we have seen earlier in some other examples earlier 

is going to be a log n operation, right because you have threads which are working on different 

parts of a large array, the array is in sized and you are going to do the sum. 

 

And then, you are going to compute the sum of sums so on and so forth, so it is going to be a log 

n operation. 
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Now, if I am going to do a large; this kind of parallel reduction in large array, then first thing is I 

will require multiple thread blocks, right because one thread; one block can only accommodate 

1024 threads, I need more than that, so definitely multiple thread blocks. Now, each block can 

reduce a portion of the array, now once that has been done, I need the results to be 

communicated, right. 

 

Because each block may reduce a portion of the array and these portions will need to be reduce 

further but that would definitely need global synchronisation across blocks. Now, we know that 

using sync thread kind of mechanism, we can only synchronise inside blocks and CUDA does 

not support global synchronisation, so essentially you have to design a reduction kernel for a 

block and you have to call it multiple times and use the results of each block to do the 

computation over the results in a significant number of iterations. 
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So, our purpose here, we need to understand that this is just a small picture we are trying to 

show, if you have a very large size data, it needs to be decomposed into subparts so, you 

decompose the computation of the overall sum across multiple kernel invocations and the kernel 

launch serves as a global synchronisation point that so, after every kernel launch, when you get 

the data back, those are the synchronisation points from which you can gather the data. 

 

And again, launch further kernels, right, so this is kind of sequence tree of kernel launches which 

we are trying to show that you have large data, with each launch you get some part reduced, and 

finally it comes down to 1 block. 
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So, here we have examples of codes of how to do these reduction but we will actually, use them 

more for the assignment purpose and for our discussions, we will focus more on a single block 

reduction and how that can be accelerated. So, before getting into that let us understand what are 

the matrix for GPU performance which we will use of course, this is something that we have 

seen earlier also, this is just a mere recap. 

 

So, ideally we will like to achieve more number of gigaflops per second; flops is floating point 

operations per second, right, more number of gigaflops and so, this is basically about the 

compute the total I can do, for compute bound kernels but in this case, it is more of a memory 

bound kernel, so I will like to see that I am being able to use the full bandwidth of the memory 

that is the full rate at which data can be read or written into the memory sub system, whether I 

have able to use that. 

 

Now, in this case, if I am just doing a small reduction operation, it has low arithmetic intensity as 

we have seen other; right, earlier also right, so it is more like we are going to optimise for 

achieving the highest possible memory band width that I can get here. 
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So, the first possible technique here for reducing a block here would be to use interleaved 

addressing. Now, this is some algorithm, which you have studied earlier also, it is just a brief 

recap. So, what we do is; we have this many data points to add and what we are doing is you 



know, we have launched half the number of threads, right I mean, essentially there are threads 

and but we are not utilising those threads here. 

 

There must have been threads which have all the threads have copied the data to the shared 

memory by the way, I will just repeat these are optimisation when you are talking about it, we 

are doing it in the shared memory, assuming that threads have done a part thread data load into 

the shared memory, right. So, this is the first job, each thread loads one element from global 

memory to shared memory. 

 

And then, I will actually engage half of the threads to perform the first level of addition, a thread 

adds 2 elements and half of the threads are actually deactivated after the initial load because they 

do not have anything to do because one thread can add 2 elements. So, all the threads together 

collaboratively load data, then half of the threads perform the step 1 of addition. This addition is 

performed in a stride of 1 because you just use the threads; thread IDs corresponding memory 

index value and the next value, right. 

 

And then, in the next iteration, you just increase the stride so, the thread ID; the thread will add 

the location; its own locations value plus the data sitting at a stride of 2 and then stride of 4 and 

then stride of 8, in that way finally, the 0th thread will compute the final sum, right. 
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So, this is the reduction kernel, again I will repeat, we have seen it earlier but here we have to 

repeat it because we need to understand the starting point and what are its flaws, right. So, first 

thing you do is; you load the data into the shared memory right, so this is the load operation and 

then once that is done after a sync thread, then all the loads are done, you start doing a reduction. 

So, this is a reduction loop, you start with the stride of 1 and in each iteration of the loop, you 

reduced by one level. 

 

So, stride of 1 to the first level reduction, second level; you operate with the stride of 2, so 

essentially you operate on consecutive data points that is stride of 1, you operate on 2 stride 

valued data points, so that stride of 2, so that is what we have here. So, s equal to 1, you do 1 

level, then you multiply by 2, you go to stride of 2 and then you again do the addition for if, this 

on this values that are loaded in s data shared memory array and their index by the tid, right. 

 

So, each step does the addition at a stride of 2, then in the next iteration, at a stride of 4 because 

you again multiply by 2, now what are the good things and the bad things here; where you have 

parallelism, you have the threads loading the data in parallel and then you have the threads doing 

the addition in parallel although, half of the threads are not used. The bad thing is the modulo 

arithmetic done here is very slow. 

 

So, for every thread, you are doing a thread ID percentile to s, right, so you to identify that 

whether this thread is the one which is supposed to do the job addition, were whether this time is 

going to see tid because as you can see with every level, half of the threads further go idle, 

whatever were the active threads in the earlier iteration, half of them would go in active, right. 

 

So, in every iteration, you take the tid and do a percentile 2s to find out whether the tid will be 

active or not. If it is active, then you do an addition with the stride of value s, right and you keep 

on doing this until and unless, your this s is up to the half of the block dimension that means, you 

have reach the; you have actually summed up all the values and you are on the; at the last level 

and then at the last level, you have the value available in s data 0 which is a final sum. 
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And that is what is written back into the global memory, so this was our reduction kernel, for this 

kernel, you can write a host program and of course, it will be quite complicated in case, you are 

going to launch it again and again for reducing in different parts of the memory. 
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So, these are host code, which were not discussing right now, we will actually provide some nice 

assignments using them and they are those will be useful and it will be described at that level but 

try and understand the kernels execution here. So, this is the reduction kernel, right and as you 

can see, first problem is it is highly divergent, why because inside the loop, you have this 

percentile operation which the thread may or may not satisfy and the modulo arithmetic which is 

computing this is very slow. 

 

Warps are very inefficient due to the reason that in every warp, you have divergence and anyway 

half of the threads do nothing after performing the global load and also the loop is expensive. So, 

some statistics here, considering an area of this size, if you perform this; if you actually execute 

this reduction kernel, multiple times using multiple kernel launches using a GPU tesla K40, this 

is the bandwidth and execution time that we can see here, right. 

 

So, just to keep that this is not an execution of 1 kernel launch, we are actually following this 

picture of orchestrating multiple kernel launches and finally, getting the value, well inside each 

kernel launch, the code will execute is this one. In each launch, you actually reduce some part of 

the array. So, as we understand that there are significant number of problems in this reduction 

code, first of all it is highly divergent and warps are inefficient. 
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The percent operation also is very slow and we will like to replace it so, what can be the next 

possibility? The next possibility is that you do interleaved addressing that means, you replace 

the; first thing is I will like to remove the divergent branch from the inner loop, right and also I 

will like to remove this divergence but still of course, I will use strided index that will help me to 

remove this percentile operation. 

 

And also, the situation that in every execution of the warp, consecutive; half of the thread IDs, I 

mean, actually diverge, right. Now, how can we do that? If we look back into the pictures here, 

let us understand the divergence here. So, in the first iteration itself, we can see the divergence 

because these all started inside a single warp, inside a single warp at this point due to that 

percentile 2s, tid percent and 2s operation, the divergence came in. 

 

Because only this thread progressed, right so, essentially inside the warp, you are getting half of 

the work done, right. Now, this does not loop very bad here but consider large number of warps 

working for a big block of code, right, for a big thread block, so that would mean, inside each 

warp, you have half of the thread is not doing the addition at this level and again, half of the 

threads not doing anything here. 

 

Try and understand there is a difference between the situation that you have half of the threads 

going inactive and half of the threads inside a warp going inactive. So, again I will just repeat; 



there is a difference between half of the threads going inactive, while there is a property of the 

operation here but if half of the threads inside a warp going active, then your warps are not 

efficient, whatever operation the other threads are supposed to do, they are not synchronised 

inside the warp. 

 

Alternative would have been that whichever were the active threads, whichever were the threads 

that are supposed to do the real addition, if I can pack them inside the same warp that would be 

more efficient because as you can see here; here, inside the warp, half of them are progressing, 

the reason is the thread IDs are what; 0, 2, 4, 6 like that, have the thread IDs of this thread itself 

being 0, 1, 2, 3 like that. 

 

Then, I looking into a warp of size 32, I could have said that okay, all the threads are working, so 

originally there would have been a higher number of threads which have done the load but then, 

inside the warp, every thread is working, so try and understand the difference, half of the threads 

getting inactive at each level is one thing but still if the threads which are working on having 

consecutive ID that would mean that they are packed inside does not work. 

 

And when the warps execute, I have fast progress right, now that is what we achieve with this 

reduction 2 here, so we will do some modification in the code to ensure that the although, half of 

the threads going inactive but the threads which are really working are of consecutive ID that 

would ensure they are executing inside a warp and they are all progressing in parallel because if 

you extend this picture, you have 32 threads which are inside a warp. 

 

That would mean in one lock step, this step of the reduction would get done, which will not be 

the case if you extend this picture for the earlier reduction 1 kernel, you can understand this. 

Now, so with the differences you can see between these 2 pictures is with respect to the thread 

IDs that which thread is doing the job. So, here I still have half number of total threads doing the 

job at each level but the threads are all sequential in index, they form a common war. 

 

I have removed the divergence, so whoever has the job to do, they will be doing the job 

maximally, there is no idle slot; that is not the case that a warp is divergent and some of the 



threads are not working, at least in the initial parts of the reduction now, that would significantly 

speed up the execution of the code, when I launch the kernel multiple times and reduce in 

different parts of the program. 

 

So, how to do this? So, essentially what I want is still my stride is going to increase from 1, 2, 4 

like that but the thread IDs is going to be like this, right. So, while doing the reduction in the 

shared memory, this is just a snapshot of the reduction in 1 kernel, these were the problems. The 

first problem was this tid percentile operation and that was slow and that was also getting the 

divergence. 
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But now, you do as the different thing so, I have a more complex access expression, earlier my 

access expression was identity map right, so every tid will map its corresponding index data in s 

data but now, what I do is; for every tid, I multiply it with s and 2 to get the index where it is 

suppose, to warp. So, initially s is 1 that means, if the tid is 0, it is working on the 0th location, if 

the tid is 1, it is working on the second location, if the tid is 2, it is working on the 4th level so on 

and so forth. 

 

So, that is what we want here, right, tid1; these are the thread IDs, it is working on location 2, tid 

2 working on location 4, tid 3 working on location 6 like that and that is achieved by this 

modified access expression and how long will this work; as long as the index is less than the 



block dimension and of course, the stride remains the same so, the striding mechanism remains 

the same from 1 to multiplied by 2, that is a hop; in every hop you multiply by 2, you start from s 

equal to 1. 

 

But you change the access expression from my simple identity map; 2, 2s multiplied by tid and 

that gives you this nice access pattern of threads. So, with this modification, you have warps 

getting utilised, lack of divergence, so you remove the divergence of the threads and you remove 

the complex percentile 2 operation but this also will suffer from the shared memory bank conflict 

issue which we will see soon. 
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First, let us understand why we will have the shared memory bank conflict, so as we can see that 

we will have a shared memory bank conflict here, now if you look into this picture so, every 

thread is accessing 2 consecutive locations right, the next thread is again accessing 2 consequent 

locations so on and so forth, right.  
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So, with this, if you look at the way the threads access the shared memory, so thread 0 access 

bank 0, bank 1, thread 1 access bank 1 and bank 2, like this if so, I draw the picture for a 

collection of threads, I would see that I will have inside a warp, I will have 2 threads accessing 

the same bank in parallel, right. Since, every thread access as parallel banks, the number of 

threads in a warp is equal to the number of banks. 

 

So, I have a 2 way conflict for every thread, the accesses are not uniform across banks, every 

thread is accessing 2 consecutive banks so, I have a bank conflict here, right. So, if more than 1 

thread attempts to access the same bank, we know, we get the bank conflict and that needs to be 

resolved now and the way that you can resolve it is you have to again perform some 

transformation into the code. 

 

Now, again we will try to see that so, every thread, this access is doing, they are accessing into 

consecutive banks, right.  
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So, how can this be modified? It can be modified by doing a sequential addressing, so you do not 

go from stride value equal to 1 and keep on increasing the stride but rather than that, you keep on 

decreasing the stride. Now, does this help? Because then, when the threads are going to perform 

the loads, the loads will not have; loads from the shared memory you will be able to remove the 

conflicts. 

 

So, this is again something I think before getting into this, you should go back and read once the 

literature that we studied about shared memory so, at this point we will be stopping today’s 

lecture and we will resume in the next lecture from this reduction 3 and so, just to summarise in 

the 2 reductions that we have discussed. The first was the original reduction where, let me just 

through the picture, we had half of the threads working. 

 

But the way the thread IDs are being arranged inside every warp, I have half of the threads 

working that was a bad thing, in order to remove that, what we did was, we came up with nice 

and intelligent access expressions, so that inside every warp, I have all the consecutive thread ID 

is working that gave me some speed up but as we can see if I do a memory access analysis, there 

is an issue of bank conflict here. 

 

And we need to remove that, we will see how that can be remove by doing further modifications 

to the expressions in the program and with this, we would like to end our lecture here, thank you. 


