
GPU Architectures and Programming

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology - Kharagpur

Lecture – 28

Optimising Reduction Kernels

Hi, so welcome back to the lectures on GPU architectures and programming so, in the last weeks

we have been discussing more on memory access and (()) (00:35) issues and throughout the last

few lectures while studying about warps and their scheduling, the divergence and how memory

access is (()) (00:44), we have fundamentally understood the GPU architectures memory

hierarchy and how it can be used to write optimised programs.

(Refer Slide Time: 00:56)

(Refer Slide Time: 01:00)

So, with this background, we are going to this topic of optimising reduction kernels that means,

we will try to use this concept for some regular programming jobs, the primary one being

reduction kernel.

(Refer Slide Time: 01:07)

So, these are the concepts which we have already covered and we will be trying to use those

concepts here.

(Refer Slide Time: 01:14)

Now, before getting into reduction kernels, we have to understand that in general, while doing

parallel programming what is important is to understand the concept of parallel patterns. Now, a

parallel pattern would mean specific pattern of tasks that is a specific execution order and data

access order of tasks which can be found occurring very frequently in some algorithm. So, if I

have a specific sequence of computation and a specific sequence of data access that is occurring

very, very frequently that is what we call as a pattern, if that has lot of parallel jobs embedded in

the pattern in terms of computation or communication of data.

It is the parallel pattern and we can see such parallel patterns occurring in very large number of

computation intensive things we do, for example, matrix multiplication, for example convolution

and also the reduction operations.

(Refer Slide Time: 02:25)

So, we will try and focus first on reduction operations, now typically what is the reduction

operation? So, a reduction algorithm or reduction operation is primarily, the name of; it is the

generic name for any operation that takes as input of vector and reduces it to a single value via

some associative operation. For example, sum, min, max, as you can see that these are all

associative operations.

So, like suppose, I am computing the min, it is same as if I write; right so, these are generic name

for operations which reduce a vector to a single value and for fundamental, the operation is the

associative operation and these are operations which may visit large number of elements in the

array, I mean so, you have lot of elements and you carry on these associative operation to get to

the final value and fundamentally, we will need to visit every element in the array and perform

the operation.

Now, since and this interesting from the point of view when I have a very large array to work

with, so a very large vector, lot of values and my final goal is to reduce it to a single value. Now,

why is this interesting; because this is kind of a pathological work load, so in this case as you can

see that there is not much of compute operations to do but significant amount of memory

operations to do.

And since, there is lot of memory operations involved, we feel that all most of the optimisations

we have discussed earlier should have a role to play in case of reduction algorithms and that is

what makes them interesting in this context.

(Refer Slide Time: 04:31)

So, we just start with the parallel sum some implementation, right so, you have a lot of numbers

and you to sum them, if you have a sequential version, it is going to an order of n operation, if

you are going to do a parallel version which we have seen earlier in some other examples earlier

is going to be a log n operation, right because you have threads which are working on different

parts of a large array, the array is in sized and you are going to do the sum.

And then, you are going to compute the sum of sums so on and so forth, so it is going to be a log

n operation.

(Refer Slide Time: 05:07)

Now, if I am going to do a large; this kind of parallel reduction in large array, then first thing is I

will require multiple thread blocks, right because one thread; one block can only accommodate

1024 threads, I need more than that, so definitely multiple thread blocks. Now, each block can

reduce a portion of the array, now once that has been done, I need the results to be

communicated, right.

Because each block may reduce a portion of the array and these portions will need to be reduce

further but that would definitely need global synchronisation across blocks. Now, we know that

using sync thread kind of mechanism, we can only synchronise inside blocks and CUDA does

not support global synchronisation, so essentially you have to design a reduction kernel for a

block and you have to call it multiple times and use the results of each block to do the

computation over the results in a significant number of iterations.

(Refer Slide Time: 06:15)

So, our purpose here, we need to understand that this is just a small picture we are trying to

show, if you have a very large size data, it needs to be decomposed into subparts so, you

decompose the computation of the overall sum across multiple kernel invocations and the kernel

launch serves as a global synchronisation point that so, after every kernel launch, when you get

the data back, those are the synchronisation points from which you can gather the data.

And again, launch further kernels, right, so this is kind of sequence tree of kernel launches which

we are trying to show that you have large data, with each launch you get some part reduced, and

finally it comes down to 1 block.

(Refer Slide Time: 07:01)

So, here we have examples of codes of how to do these reduction but we will actually, use them

more for the assignment purpose and for our discussions, we will focus more on a single block

reduction and how that can be accelerated. So, before getting into that let us understand what are

the matrix for GPU performance which we will use of course, this is something that we have

seen earlier also, this is just a mere recap.

So, ideally we will like to achieve more number of gigaflops per second; flops is floating point

operations per second, right, more number of gigaflops and so, this is basically about the

compute the total I can do, for compute bound kernels but in this case, it is more of a memory

bound kernel, so I will like to see that I am being able to use the full bandwidth of the memory

that is the full rate at which data can be read or written into the memory sub system, whether I

have able to use that.

Now, in this case, if I am just doing a small reduction operation, it has low arithmetic intensity as

we have seen other; right, earlier also right, so it is more like we are going to optimise for

achieving the highest possible memory band width that I can get here.

(Refer Slide Time: 08:22)

So, the first possible technique here for reducing a block here would be to use interleaved

addressing. Now, this is some algorithm, which you have studied earlier also, it is just a brief

recap. So, what we do is; we have this many data points to add and what we are doing is you

know, we have launched half the number of threads, right I mean, essentially there are threads

and but we are not utilising those threads here.

There must have been threads which have all the threads have copied the data to the shared

memory by the way, I will just repeat these are optimisation when you are talking about it, we

are doing it in the shared memory, assuming that threads have done a part thread data load into

the shared memory, right. So, this is the first job, each thread loads one element from global

memory to shared memory.

And then, I will actually engage half of the threads to perform the first level of addition, a thread

adds 2 elements and half of the threads are actually deactivated after the initial load because they

do not have anything to do because one thread can add 2 elements. So, all the threads together

collaboratively load data, then half of the threads perform the step 1 of addition. This addition is

performed in a stride of 1 because you just use the threads; thread IDs corresponding memory

index value and the next value, right.

And then, in the next iteration, you just increase the stride so, the thread ID; the thread will add

the location; its own locations value plus the data sitting at a stride of 2 and then stride of 4 and

then stride of 8, in that way finally, the 0th thread will compute the final sum, right.

(Refer Slide Time: 10:13)

So, this is the reduction kernel, again I will repeat, we have seen it earlier but here we have to

repeat it because we need to understand the starting point and what are its flaws, right. So, first

thing you do is; you load the data into the shared memory right, so this is the load operation and

then once that is done after a sync thread, then all the loads are done, you start doing a reduction.

So, this is a reduction loop, you start with the stride of 1 and in each iteration of the loop, you

reduced by one level.

So, stride of 1 to the first level reduction, second level; you operate with the stride of 2, so

essentially you operate on consecutive data points that is stride of 1, you operate on 2 stride

valued data points, so that stride of 2, so that is what we have here. So, s equal to 1, you do 1

level, then you multiply by 2, you go to stride of 2 and then you again do the addition for if, this

on this values that are loaded in s data shared memory array and their index by the tid, right.

So, each step does the addition at a stride of 2, then in the next iteration, at a stride of 4 because

you again multiply by 2, now what are the good things and the bad things here; where you have

parallelism, you have the threads loading the data in parallel and then you have the threads doing

the addition in parallel although, half of the threads are not used. The bad thing is the modulo

arithmetic done here is very slow.

So, for every thread, you are doing a thread ID percentile to s, right, so you to identify that

whether this thread is the one which is supposed to do the job addition, were whether this time is

going to see tid because as you can see with every level, half of the threads further go idle,

whatever were the active threads in the earlier iteration, half of them would go in active, right.

So, in every iteration, you take the tid and do a percentile 2s to find out whether the tid will be

active or not. If it is active, then you do an addition with the stride of value s, right and you keep

on doing this until and unless, your this s is up to the half of the block dimension that means, you

have reach the; you have actually summed up all the values and you are on the; at the last level

and then at the last level, you have the value available in s data 0 which is a final sum.

(Refer Slide Time: 12:53)

And that is what is written back into the global memory, so this was our reduction kernel, for this

kernel, you can write a host program and of course, it will be quite complicated in case, you are

going to launch it again and again for reducing in different parts of the memory.

(Refer Slide Time: 13:06)

(Refer Slide Time: 13:11)

So, these are host code, which were not discussing right now, we will actually provide some nice

assignments using them and they are those will be useful and it will be described at that level but

try and understand the kernels execution here. So, this is the reduction kernel, right and as you

can see, first problem is it is highly divergent, why because inside the loop, you have this

percentile operation which the thread may or may not satisfy and the modulo arithmetic which is

computing this is very slow.

Warps are very inefficient due to the reason that in every warp, you have divergence and anyway

half of the threads do nothing after performing the global load and also the loop is expensive. So,

some statistics here, considering an area of this size, if you perform this; if you actually execute

this reduction kernel, multiple times using multiple kernel launches using a GPU tesla K40, this

is the bandwidth and execution time that we can see here, right.

So, just to keep that this is not an execution of 1 kernel launch, we are actually following this

picture of orchestrating multiple kernel launches and finally, getting the value, well inside each

kernel launch, the code will execute is this one. In each launch, you actually reduce some part of

the array. So, as we understand that there are significant number of problems in this reduction

code, first of all it is highly divergent and warps are inefficient.

(Refer Slide Time: 14:52)

The percent operation also is very slow and we will like to replace it so, what can be the next

possibility? The next possibility is that you do interleaved addressing that means, you replace

the; first thing is I will like to remove the divergent branch from the inner loop, right and also I

will like to remove this divergence but still of course, I will use strided index that will help me to

remove this percentile operation.

And also, the situation that in every execution of the warp, consecutive; half of the thread IDs, I

mean, actually diverge, right. Now, how can we do that? If we look back into the pictures here,

let us understand the divergence here. So, in the first iteration itself, we can see the divergence

because these all started inside a single warp, inside a single warp at this point due to that

percentile 2s, tid percent and 2s operation, the divergence came in.

Because only this thread progressed, right so, essentially inside the warp, you are getting half of

the work done, right. Now, this does not loop very bad here but consider large number of warps

working for a big block of code, right, for a big thread block, so that would mean, inside each

warp, you have half of the thread is not doing the addition at this level and again, half of the

threads not doing anything here.

Try and understand there is a difference between the situation that you have half of the threads

going inactive and half of the threads inside a warp going inactive. So, again I will just repeat;

there is a difference between half of the threads going inactive, while there is a property of the

operation here but if half of the threads inside a warp going active, then your warps are not

efficient, whatever operation the other threads are supposed to do, they are not synchronised

inside the warp.

Alternative would have been that whichever were the active threads, whichever were the threads

that are supposed to do the real addition, if I can pack them inside the same warp that would be

more efficient because as you can see here; here, inside the warp, half of them are progressing,

the reason is the thread IDs are what; 0, 2, 4, 6 like that, have the thread IDs of this thread itself

being 0, 1, 2, 3 like that.

Then, I looking into a warp of size 32, I could have said that okay, all the threads are working, so

originally there would have been a higher number of threads which have done the load but then,

inside the warp, every thread is working, so try and understand the difference, half of the threads

getting inactive at each level is one thing but still if the threads which are working on having

consecutive ID that would mean that they are packed inside does not work.

And when the warps execute, I have fast progress right, now that is what we achieve with this

reduction 2 here, so we will do some modification in the code to ensure that the although, half of

the threads going inactive but the threads which are really working are of consecutive ID that

would ensure they are executing inside a warp and they are all progressing in parallel because if

you extend this picture, you have 32 threads which are inside a warp.

That would mean in one lock step, this step of the reduction would get done, which will not be

the case if you extend this picture for the earlier reduction 1 kernel, you can understand this.

Now, so with the differences you can see between these 2 pictures is with respect to the thread

IDs that which thread is doing the job. So, here I still have half number of total threads doing the

job at each level but the threads are all sequential in index, they form a common war.

I have removed the divergence, so whoever has the job to do, they will be doing the job

maximally, there is no idle slot; that is not the case that a warp is divergent and some of the

threads are not working, at least in the initial parts of the reduction now, that would significantly

speed up the execution of the code, when I launch the kernel multiple times and reduce in

different parts of the program.

So, how to do this? So, essentially what I want is still my stride is going to increase from 1, 2, 4

like that but the thread IDs is going to be like this, right. So, while doing the reduction in the

shared memory, this is just a snapshot of the reduction in 1 kernel, these were the problems. The

first problem was this tid percentile operation and that was slow and that was also getting the

divergence.

(Refer Slide Time: 19:49)

But now, you do as the different thing so, I have a more complex access expression, earlier my

access expression was identity map right, so every tid will map its corresponding index data in s

data but now, what I do is; for every tid, I multiply it with s and 2 to get the index where it is

suppose, to warp. So, initially s is 1 that means, if the tid is 0, it is working on the 0th location, if

the tid is 1, it is working on the second location, if the tid is 2, it is working on the 4th level so on

and so forth.

So, that is what we want here, right, tid1; these are the thread IDs, it is working on location 2, tid

2 working on location 4, tid 3 working on location 6 like that and that is achieved by this

modified access expression and how long will this work; as long as the index is less than the

block dimension and of course, the stride remains the same so, the striding mechanism remains

the same from 1 to multiplied by 2, that is a hop; in every hop you multiply by 2, you start from s

equal to 1.

But you change the access expression from my simple identity map; 2, 2s multiplied by tid and

that gives you this nice access pattern of threads. So, with this modification, you have warps

getting utilised, lack of divergence, so you remove the divergence of the threads and you remove

the complex percentile 2 operation but this also will suffer from the shared memory bank conflict

issue which we will see soon.

(Refer Slide Time: 21:34)

First, let us understand why we will have the shared memory bank conflict, so as we can see that

we will have a shared memory bank conflict here, now if you look into this picture so, every

thread is accessing 2 consecutive locations right, the next thread is again accessing 2 consequent

locations so on and so forth, right.

(Refer Slide Time: 21:56)

So, with this, if you look at the way the threads access the shared memory, so thread 0 access

bank 0, bank 1, thread 1 access bank 1 and bank 2, like this if so, I draw the picture for a

collection of threads, I would see that I will have inside a warp, I will have 2 threads accessing

the same bank in parallel, right. Since, every thread access as parallel banks, the number of

threads in a warp is equal to the number of banks.

So, I have a 2 way conflict for every thread, the accesses are not uniform across banks, every

thread is accessing 2 consecutive banks so, I have a bank conflict here, right. So, if more than 1

thread attempts to access the same bank, we know, we get the bank conflict and that needs to be

resolved now and the way that you can resolve it is you have to again perform some

transformation into the code.

Now, again we will try to see that so, every thread, this access is doing, they are accessing into

consecutive banks, right.

(Refer Slide Time: 23:11)

So, how can this be modified? It can be modified by doing a sequential addressing, so you do not

go from stride value equal to 1 and keep on increasing the stride but rather than that, you keep on

decreasing the stride. Now, does this help? Because then, when the threads are going to perform

the loads, the loads will not have; loads from the shared memory you will be able to remove the

conflicts.

So, this is again something I think before getting into this, you should go back and read once the

literature that we studied about shared memory so, at this point we will be stopping today’s

lecture and we will resume in the next lecture from this reduction 3 and so, just to summarise in

the 2 reductions that we have discussed. The first was the original reduction where, let me just

through the picture, we had half of the threads working.

But the way the thread IDs are being arranged inside every warp, I have half of the threads

working that was a bad thing, in order to remove that, what we did was, we came up with nice

and intelligent access expressions, so that inside every warp, I have all the consecutive thread ID

is working that gave me some speed up but as we can see if I do a memory access analysis, there

is an issue of bank conflict here.

And we need to remove that, we will see how that can be remove by doing further modifications

to the expressions in the program and with this, we would like to end our lecture here, thank you.

