
GPU Architecture and Programming

Prof. Soumyajit Dey

Department of Computer Science and Engineering

Indian Institute of Technology – Kharagpur

Module No # 06

Lecture No # 27

Memory Access Coalescing (Contd.)

Hi welcome to the lecture series on GPU architectures and programming so in the last lecture we

have seen certain examples of how coalesced access on the shared memory was helping us to do

nice I mean nice optimization with respect we are computing transpose of a matrix. So we

figured out that with the possible optimization that could be done we were able to achieve almost

similar execution times which shared memory based transpose computation.

(Refer Slide Time: 01:01)

As is the case which shared memory based simple copy operation. So this also highlights the

architectural issues that one has to keep in mind while writing programs for the GPU

architectures. Now upto this point of time the memory conflicts that we handle where of 2 types

once was how to coalesce global memory accesses and how to remove bank conflicts while

accessing the shared memory.

Now there is a related problem with respect to global memory which is also relevant in this

concept in this context and it is known as problem of partition camping. So this is the again

something related to global memory and we thought it would be good to discuss this after we

discuss this shared memory bank conflict because the idea is similar in that sense. So just like we

have this notion of bank conflicts in shared memory the reason being this shared memory is

decided across banks in order to facilitate parallel access.

Similar ideas hold for global memory that the global memory is also divided into certain

partitions. So depending on the GPU series there can be the different number of partitions so it

can be either a 6 partition I mean a 6 way partitioning of the global memory or it can be 8 way

partitioning of the global memory. So we will consider the 8 way partitioning where for each

partition we consider that the memory is 256 bytes wide that means I can read a chunk of 256

bytes from 1 partition in the global memory.

So that would also mean that since I have let us if I consider an 8 way partition global memory I

can read 8 chunks of 256 bytes in parallel from the global memory. So what we like to do is to

access the global memory effectively and facilitate as much concurrent access as possible who

get data from the different partitions in the global memory in parallel right. Now why I mean just

like we have this issue of back conflicts we have the similar issue here known as I mean the

name is different is called partition camping so why will that occur.

It occurs with the global access memory are direct to a subset of partition just like imagine

multiple threads in a warp they are executing and they are trying to access the same bank of a

shared memory. Now just take the idea at a higher level consider that you have different SM’s

and blocks executing in the different SM’s and they are trying to access in parallel the same

global memory partition that would actually queue the corresponding access request and the

access will slow as a result of that.

So just instead of having instead of considering access of threads inside the warp for the single

bank of shared memory you go to the higher level I have repeating here that you consider a

multiple blocks which are executing in different SM’s and as we know that each SM as a

memory controller based interface with the global memory and each of this blocks are placing

their request to their respective memory controllers for accessing the global memory and it

happens to the case where those request are going for the same partition.

Now inside the same partition I can only read in 1 transaction to 256 bytes right so all those

queries we get q dot and it will create this issue of partition campaign.

(Refer Slide Time: 04:47)

So I mean we will summarize like this that since the partition camping concerns how active

thread blocks behave the issue of how thread blocks are scheduled on the multi processors is

important. As we are discussing that the partition can be accessed in parallel by this SM’s so

what really matters is how the blocks has been distributed across the SM’s. Now how does it get

done? So when a kernel is launched the order in which blocks are assigned to a multiprocessors

is determined by the single dimensional block id.

So suppose you have a 2D block so if you map this arrangement of 2D blocks into a row

measure ordering of blocks. So then you get a unique block id right following this relation I

mean so essentially we are linearizing the 2D arrangement of blocks to get a total order on a

block of id’s and this single integer total order will actually tell you how the blocks are getting

distributed. So the following are (()) (05:55) arrangements the blocks will get distributed

following this BID value right.

(Refer Slide Time: 06:01)

No so in this way once blocks gets distributed across the SM’s technically I have then single SM

considering as SM I mean doing our data crunching over significant size data so that all the SM’s

have got fully full engagements and each SM have been mapped with multiple blocks. So when I

have reached this maximum occupancy I mean addition I mean additional blocks are assigned to

the multiprocessor as it is needed.

Now suppose I have this assignment of block done but then there is no control so let us assume

that I have a set of blocks as assigned to multiprocessor 1 set of blocks assignment set of

multiprocessor 2 set of blocks into multiprocessor 3 so and hence so forth but then as we are

discussed earlier there is absolutely no control under execution ordering of the blocks across the

SM’s right. Because the high level scheduler of GPU system is distributing the blocks across the

SM’s inside the SM’s you have a low level scheduler which is deciding which is actually

forming the warps from the blocks and it is dispatching the warps to execute across a SP codes

right.

So you do not have really any control over in what the blocks progress right as we have

discussed earlier inside an SM’s there will be a warp the low level schedule of the warp

scheduler who will follow some method it will dispatch warps by dissolving dependences but

across SM’s there is no such control and it is done intentionally to achieve maximum parallelism

as much as can be extracted from the application.

So how quickly and in which order the blocks get executed cannot be determined but the active

blocks are initially contiguous I mean the active blocks that are initially contiguous but

become less continuous of the execution of the kernel will progress that is what are packed.

(Refer Slide Time: 08:20)

But now let us try and understand that how the blocks will be a block across the SM’s are going

to access the data in the global memory. So for this problem we consider a situation that so for

this problem we consider this kind of a definition of threads, tiles and blocks so if you remember

from our earlier examples we are considering that the data tile size is 32 cross 32. And we have

blocks of size 32 cross 8 right so it is a 2D arrangement here.

Now with this kind of a setting so and also we consider that with this kind of tile size for the data

and with this kind of dimension of blocks we are trying to do a transpose kind of computation on

a matrix whose size is 2048 cross 2048 okay. So if I am doing it like that we let us try and

identify how data maps on the global memory. So since in the global memory i have this division

of 8 partitions let me just number the partitions 0, 1, 2, 3 like that.

Each of the partitions at 256 bytes wide right so sorry this is not the numbering of the partitions

the partitions have shown here using the colors and we will define the numbering here. So the

first yellow color part is basically partition 0 the second one is partition 1 and like that right.

Now since each of this partitions is 256 bytes wide so if I have data sitting in strides of 2048

bytes or for that matter 512 floats because 512 float means for 4 byte so multiply and get 512

times 4 is 2048.

So if I have 8 partitions each partitions is 256 byte wide so if I just do this calculation that this n

multiplies to be 2048. So I have the large sequence of data points. So every data points and

whatever is its partition that data point index + 2048 bytes would give me so I mean that data

starting from that data point to the data point which is sitting 2048 bytes I mean further from that

they both will belong to the same partition right. I mean is really obvious because each partition

is again 256 byte wide.

So you get this stride size of 2048 just by doing this simple calculation of the total width offer by

the 8 partitions. Now what does this really mean in terms of the data types for example if I

consider a float matrix so essentially a float matrix let us say it is size is 512 cross K right so I

have 512 rows so 512 rows means the row is 512 times 4 bytes so that is 2048 bytes wide. So

essentially each column will get mapped to a unit partition right to a single partition.

So if I have a 2048 cross 2048 matrix here so essentially its 2048 is a multiple of 512 right so

again I will explain what is going on. I have 8 partitions each partition is 256 byte width so

overall width is 2048 bytes. So I can accommodate 512 floats into 2048 bytes so if I consider a

float matrix with 512 cross K number of columns then essentially what is happening every

column of data maps to a single partition right.

Now the logic will hold for a matrix of higher dimension where the dimension is a multiple of

512 right now since 2048 is also a multiple of 512 so for our target matrix of this size the

columns will also get mapped to the single partition here right. Now since I am considering data

tiles of 32 cross 32 floats they are accessed by 1 dimensional blocks right and so we are

considering our earlier examples right where if you go to the block dimensional definition it was

32 cross 8 so we are considering that I have these many threads to process the tile of this size

right.

Now if I do a mapping of the tile with respect to the block id right then I try and figure out how

exactly this tiles are getting distributed across the partitions so with tiles of 32 cross 32 floors

whose 1 dimensional block id’s are shown in this figure again I will just repeat the blocks are

smaller because inside the block we have set of threads and each thread accesses 4 elements in

the tile but since 1 block takes care of accessing 32 cross 32 floats I represent that tile size with

the corresponding block id why?

Because the number of threads in the block does not matter in this context I am trying to see

what is the memory consumption by that block. So that block of small size the block of id 0 or 1

each of them are working on a tile size of area 32 cross 32. Now since this are 2D map so this 32

cross 32 tile let us understand how they are distributed across partitions so in the x direction I

have 32 data points.

And so each of them are of size 4 bytes right so I have 128 bytes in the x direction for each tile

and since the partition is 256 bytes wide I will just repeat this part again. Partition is 256 byte

wide each tile in the x direction it holds 32 floats that would mean it is 32 cross 4 bytes so it is

128 byte wide right that means I can accommodate 2 tiles 2 consecutive tiles in 1 partition so

there is a 2 level argument here.

First one I would say is that why I am mapping this tile with a block id I am just writing 0 for tile

0 because I am seeing that look at this tile of 32 cross 32 will be processed by a corresponding

block of size 32 cross 8 but what is the way in which the tile is going to be represented here. So

the tile is in 2 dimension so we it maps to the memory in the x direction I have 32 floats being

arrangement so they would consume 128 bytes.

So I can have 2 consecutives tiles mapped in this memory right so in this way my input data that

is the high data matrix considering it the very big matrix is getting map like this right. So how

many tiles do I really have in the x direction of course so that would mean you decide 2048 / 32

you have got 64 tiles right. So the tiles with id 0, 1, 2 like that I mean I am writing the

corresponding block id’s here right when the block id which are going to work in this tiles so you

map this tiles in the across the partitions 0 to 63 right.

Now so overall I have got 8 partitions now so in each partition I have got 2 of them sitting 01

and then 64, 65 and like that. So this is how the original arrangement is here right so this is how

it is going to continue but the operation that I want to do on this data that is in the global memory

is to perform a transpose operation right. So the expected pattern in which the output data should

be organized as to be like this as we can see just take a look into the o data part.

So again just to summarize the overall problems space here I have the input and the output

matrixes here and they are arranged in idata and odata. I am just trying to show how they map

across partitions so overall I am just figuring out that inside each partition I can have 2

consecutive tiles here right and in that way if I continue I will get this kind of a distribution right.

So I have overall this 8 partitions and all data which is in strides of 2048 types will just keep on

repeating and for each tiles I have this 0 and 1.

And here I am trying to show 1 possible arrangements of course this is not this indexes are just

trying to represent that how the 1 dimensional block id’s get mapped here right. Now let us try

and figure out that for doing a transpose computation what is the corresponding overhead in

terms of partition camping from the global memory side.

(Refer Slide Time: 19:34)

So earlier we have been looking into the problem that 1 block is working in the shared memory

and how much optimizations are getting possible. But now we are taking the global view of the

problem right so I have got concurrent blocks executing across SM’s and they are accessing the

tiles from the global memory. Now let us understand what is the access pattern from the let us

understand what is the access pattern such that from the input data matrix and what is the access

pattern for the output data matrix right.

So concurrent blocks will be accessing the tiles row wise in the idata matrix and in this so as we

can see this roughly be equally distributed among particles right. As we can understand the block

id’s the concurrent blocks that are executing zeroth block, first block, second block, third block

like that each of them have got a working set which is the 32 cross 32 tiles size and 2 consecutive

tiles map into the same partition right.

So since it is the row wise access so I can expect that the concurrent in a average scenario they

are consecutive block id’s and they are accesses are almost equally distributed among the

partitions. So I mean of course after some time they lost the synchronization in terms of which

blocks is executing in which SM. But since the blocks are distributed across SM’s and there is no

fine grain control over there execution order roughly from each SM whatever partition is being

accessed for a block overall since the access have to be concurrent.

On the average I would expect that they are roughly equally distributed among the partition

again we will just try to understand that in a perfect scenario it will be equally distributed

otherwise also it will be roughly equally distributed the reason because I do not have

concurrency control across the SM’s I do not have control over the block execution ordering

across SM’s.

We are expecting that concurrent blocks that are executing across this SM’s they are accesses to

the partitions that are equally distributed just because I am con-current blocks will access that tile

data row wise right. Now if I consider how this concurrent across SM’s are going to access the

output data again I do not control over concurrent blocks across the SM’s but they will access the

data column wise in odata.

Now let us understand what is happening here so I have got blocks from different multiple

processors which are going to access the odata and as we understand since the blocks are roughly

distributed equally across the SM’s. So they are whatever they fetched row wise they are trying

to write column wise in the overall arrangement of the matrix and that will also get reflected here

in terms of the global memory accesses that this blocks will access the tiles column wise in odata

by columns here we mean this column of tiles sitting in the same partition.

So I am again I will just summarize I have different blocks executing across SM’s they are

accessing this tiles in parallel right. But when this blocks are going to access the data in odata

matrix for writing it out the writes are going to happen in this order why? Because as we can see

that this are the consecutive tile id’s and they are sitting in the same column of I mean here

column does not mean column of data but the column of tiles indexed with the column of tiles

which are indexed with the corresponding block id’s be very careful here right.

So since this tiles will be accessed column wise in odata this will typically access only a few

partitions again we are repeating here we cannot say strongly that the access will be on exactly

the same partition in an idea scenario yes because I have exactly the consecutive block id’s

which are executing across SM’s and they are accessing the same column of tiles in odata which

means they are accessing all of them are accessing the exactly same partition.

But since I do not have any control over the execution order of the blocks but still I can expect

that their execution order will not be exactly distributed it will be a bit different from the perfect

column access but still it is not going to distributed across all partitions but it would be restricted

to much smaller number of partitions. So overall the philosophy here is that when you are going

to read from idata you are actually reading in a perfect scenario from all partitions in parallel

from in a actual scenario from a large number of partitions in parallel.

But when you are writing odata you are in a I mean you may be reading from very small number

of partitions in parallel. Now just like I mean shared memory bank conflict you have this issue of

partitions camping here because from each partition you can read only in this width of 256 bytes.

So essentially you will read he first row here and the first row here in the executive tiles right.

Now okay what happens if I consider the optimization with this for resolving the conflict of

shared memory well what was the optimization?

The optimization was that okay you just increase the tile dimension by 1 and but did not really

use it was a do not care dimension that is what we call as padding the memory with data so that

the access I mean access actually resolve the bank conflicts but if we are going to use that same

concepts here is going to be potentially expensive why? Because instead of adding a single

column you are going to add full tiles here right.

So that is 1 problem but also you I mean since you do not have any control over the blocks that

are executing the scheduling. So you are not also sure that how good that approach is going to

work in this case we can do it in a different way possibly will see how. So first of all we

understand that padding can be an option here but with respect to shared memory in this case the

option is much more expensive option.

So when the rights are happening in this order as we can see writes are kind of column the writes

are accessing the same partition more frequently I mean writes across blocks y because as we can

see that tiles are kind of arranged here in a column wise way right. So that would mean multiple

blocks across SM’s they are kind of not accessing all the tiles all the partitions available in

parallel but they are accessing only a few tiles for few partitions.

Now why would that happen because as we have discussed in ideal scenario it will be the worst

case because blocks across SM’s suppose they are executing in a perfect last step round robin

order then they would be accessing I mean this kind of a single column of tiles so it will be only

accessing a single partition but since I am not controlling the execution speed of the blocks

across the SM’s and their scheduling.

So still I would expect that they are behavior would not be totally uniformed and they would

access only a few partitions while doing the writes on the odata. So just to summarize when

multiple are going to access the idata it is expected that lot of partitions would get access in

parallel but when this multiple blocks are going to access the odata it is expected that lot of

blocks are going to I mean only to access a few partitions right.

So in the first case while reading since I am kind of reading row wise data so it is expected that I

will read from lot of partitions but when I write only to a few partitions. Now to reduce this issue

of partitions camping we can follow the same strategy as was done in case of shared memory. So

in that case the strategy was padding by padding we essentially what was did was we introduced

a new column in the shared memory.

Now the good thing of introducing that extra column in the tile was that the way in which the

data was written earlier the data was getting loaded was that everything from a tile and was

thought of conflict but after we did the padding there was full coalescing achieved in terms of

both loads and stores from the shared memory. Similar option was would share of course but of

course there we can understand it is a potentially very expensive option.

Because you are not just only adding one single column of 0’s here right so it is a much more

expensive option and it is possible to have a better option here. So let us see what is the better

option.

(Refer Slide Time: 30:02)

So in this case what we do is diagonal block reorder now what does that mean so if you look at

the normal way in which the blocks are arranged in a memory I mean the blocks are arranged as

per the programming model here we follow our normal Cartesian coordinate system right. So

following the normal Cartesian coordinate system the block id’s in terms of x and y dimension

gets distributed like in the left hand side figure left hand side box right.

And this distribution of the Cartesian coordinates they are easily linearized using this formula

that has been given and they give me a total ordering of blocks which is the row measure

ordering as we can see here is a normal row measuring array. And primarily due to this ordering

we get the issue of partition camping with respect to the global memory right because this order

is only creating the corresponding arrangement of access right access of the blocks by the

respective block id’s and you do not want the accesses to happen in such a way and I can

actually defer the accesses by modifying the order of accesses by changing the allocation of

block id’s to the different tiles right.

So essential that is what this picture is about right I am modifying the id of the block who is

going to access a specific tile. So just to understand again if you look into this figure I have a

mapping in a memory right of the tiles and what we are will trying to say is that the which block

of threads is going to access with tile. So the work is same the work is that you to do a transpose

operation on the memory what not going to change is what is the block id of the thread block

which is going to do the respective warp.

Now why is that going to warp because if I change the ordering of blocks then accordingly the

schedule will also pick up blocks following the computation of the block id’s right this is the

important point I mean so just to summarize here. We understand one thing that the scheduler is

going to assign block to SM’s following this relation right. So if I am going to change the way

block id’s are going to fed for computing this things will be different so that is what we are going

to do.

So we shift from this Cartesian coordinate system to the diagonal coordinate system so that we

can have a different block id computation scheme while doing the access of the memory right.

Essentially what I am doing is I am giving a same job to a different block that is what we can say

right. Now of course I cannot pass a different block id to the scheduler but instead of that what I

can do is I can make the scheduler corresponding block work on a different id memory address.

Now this is the important thing we need to understand here so instead of having the blocks work

on this styles so this are essentially the tile number trying to say here that if I am following a one

on one mapping of block id’s with tile and to respective positions this is the way the tiles are

going to the arranged right. Now we are saying that no let it not be the case let the tile indexes

there be different because essentially the tile index is represent the way different blocks are

going to work on them.

And we modify the way the tiles are being accessed by suitable access expressions. So as you

can see from this Cartesian coordinate which shift to something called a diagonal coding so what

is that? So we start enumerating blocks in a different way so I am just trying to show how we are

going to enumerate the blocks first we will do it here and then we will see how it translates to the

original scheme here.

So here this is my access pattern right here I am saying that okay let me numerate them like this

primary diagonal followed by the first secondary diagonal in the right hand side. Then this then

the other diagonal here then this then here then this so essentially you start with the primary

diagonal then you start moving this way and then you switch here and start moving this way and

you keep on switching back and forth right.

So primary diagonal switch to right side move on diagonal switch to left side move on diagonal

so in both cases we are switch you are moving in this direction but you are switching among the

sides once in a while right. So I want this enumeration scheme for the ID’s right I want this is the

way in which the block should be accessing the data right. So for doing that I use this diagonal

coordinate scheme so that if this formula is applied on this scheme I get this enumeration order.

Now the question is why do I have to change the scheme can I alter the formula ideally no why

because a we are provided with the system own definition of variables in terms of block id’s and

thread id’s right. So what we can really can do is we do not have a direct control or which

actually from the we cannot define from our programs given a thread what is its we cannot

redefine the block id component or the thread id component values because it is thread id x and

block id x they are all system variable.

But what we can do is we can define a different mapping here such that the respective block

follows this mapping while accessing the different locations in the memory. So just to

understand this was my Cartesian coordinate system which gave me this nice linear

representation of block id’s I shift to a different diagonal coordinates system on whom if I apply

this same relation of block id x plus grid dimension in the x direction times block id x y then I

get a different linearization which is more of an access to the diagonal right.

The good this if I have access to the diagonal that ensures that I am writing the output data cross

more number of partitions right. And removing the problem of partition camping we will see

how but just to now see that okay how is this diagonal coordinate define. So observe any entry

here with unequal components so let us this entry and this entry you see the second component

and the first component are same and this is true for all the other entries right. So here also the

second component here is 1 the first component here is 1 right so they are same.

(Refer Slide Time: 37:46)

So what we do is we use this kind of ideas to re-compute the new block id x so original block id

x variables are block id x dot x and block id x dot y you define a new diagonal coordinate system

and call it block id x underscore y which is block id x dot x right. As you can see the second

component here becomes the first component here so this relation holds. And the block id x dot x

which is the other variables that means so the second component here is becoming the first

component here right.

But what happens to the other component so the other component here which is block id x

underscore x is computed using this relation now this is the relation which is easy to check right.

So all you need to do is you apply these 2 relations on the original block id x dot x and block id x

dot y variables here you will get this modified diagonal coding system that means you get this

block id x underscore y and block id x underscore x variables recomputed to give you new

values of block id’s here right in the x and y direction.

Now why do you really want to use it now you just introduce this 2 new lines of code and use

this new interpretation of block id’s in x and y direction throughout the kernel. So essentially at

the start of your original code yo replace this block id x underscore y you replace the block id x

underscore dot y with block id x underscore y’s and you replace your block id x underscore dot x

with this block id x underscore x values with you are computed here and then throughout your

program uniformly you replace the dot x and dot y’s with underscore x and underscore y’s for

the block id’s.

(Refer Slide Time: 39:50)

Now so essentially what you do is this is your re-computation right so of course you have to

decide about the re-computation in 2 different ways because incase the matrix is symmetric the

width is equal to height then this relation will hold uniformly for all block id’s and block id x dot

x and block id x dot y values otherwise is not symmetric then you have to some extra calculation

which is provided here.

I mean this we are not getting details we should be able to understand where looking into the

code later on right. So essentially this is the segment of code through which you do the diagonal

reordering and essentially you transit from Cartesian code in this system to a diagonal

coordinates system and then why because then if you apply this linearization formula then what

you get is the different access pattern of the set blocks right.

So essentially what we will do is with this you have a different value of block id x underscore x

and block id x underscore y and instead of using the original block id x variable if we use this

block id x variables then the order that we just discussed that is the diagonal based ordering that

is the ordering in which the thread blocks will be accessing the data. So try and really think what

is happening you are not really changing the system variables you are not changing threads

schedulers or anything which is it is out of your hand.

But what you are changing is the access expression of each of the blocks right that is the most

important thing we need to understand.

(Refer Slide Time: 41:36)

Without changing anything in the original program you transform the program from one

coordinate system to another coordinates system and now when you are using this new

underscore x and underscore y variables to compute the x and y indexes to do the tiles based

computation that means you load from idata and you again use the tile to write to the odata. Just

the original program right only you are using this block id x underscore y and block id x

underscore x variables to do the x index and y index computation and then using the x index and

y index to compute the index out right.

So this is the only modification that you have right that you just start using underscore x instead

of the dot x for the block id’s with this essentially what you are ensuring earlier your block id’s

mapping was exactly the order in which you are accessing the tiles based on the access

expression but now due to this alternate mapping you have consecutive block id’s but they are

making access of the tiles like this right they are going to access the tile value like this.

(Refer Slide Time: 43:02)

So with the same program now let us see how the block id will get distributed when I consider its

access of the partitions. So in the Cartesian coordinate system this is what was happening the

blocks id’s where distributed in a row wise manner right in the output data came column wise

manner. But now if we use the diagonal coordinate system this is the first input data string so

you have the first diagonal they came on the right hand side of the next diagonal then the left

hand side you will have another diagonal like that.

And then when you transform here what is really happening so essentially the diagonal switch

and you get the same effect so all that is happening is the diagonal are switching space right. So

for when you are reading or writing that data you have a nice balanced way in which the majority

of the partitions are going to be accessed because of this diagonal scheme this is the good thing

you get right. So when you read the data you read from majority of partitions because you have

the blocks with id’s 0, 1, 2, 3 like that they are going to read from this tiles right.

The blocks are going to read from this tiles essentially the block id represents and what tile they

are going to map right and when they are going to write and again to write a following this

diagonal based ordering so they are again going to write to multiple partitions in parallel

significant number of partitions right. So that is the primary idea here that by making this shift in

the coordinate system you are able to increase the number of partitions which are being used for

writing the data instead of pure column wise write of data.

And with this we will come to a conclusion of our discussion on memory access policy I hope it

was really useful for your increasing understanding of how GPU memory system is organized

and how it can be exploited for optimizing your code. Just to summarize I mean remember one

thing when we have talked about this block id’s as I have told time and again but I think it is

important also.

The block id’s are determining which tile you are accessing right and which tile you are

accessing depends on what is its location in the partitions in the memory partitions. Since we

have changed the block id’s ordering here the block id’s linearization scheme here I have

changed the way in which the partition are getting accessed with respect to read as well as write

and in both cases I am accessing a lot of partitions together and that is fundamentally giving me

the speed up with respect to the previous version of the code right with this we will end this

lecture thank you.

