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Hi welcome to the lecture series on GPU architectures and programming. In the last lecture we 

gave a nice example of optimization using the share memory which respect to matrix transpose 

computation and we saw that how using shared memory you can have very nice global, load and 

store access patterns and that leads to order of magnitude reduction in the total execution time of 

the transpose as we saw from our kernel analysis statistics.  
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By the way we will just like to repeat that these statistics has been revealed using our system 

where we have our tesla K40 GPU card. Now of course for if you are trying to have a have 

results of a of profiling using a NVPROF or some other your favorite profiler for this kind of 

computation the timing you are going to get of course will depend on the system you will using 

right.  

 



Here just use this value for comparison among the different optimizations we show because we 

are running all the different examples or different variants of the same operation in the same 

system. So consider the relative performance values here.  
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So one interesting thing that we started showing here was that since in our way of computation 

the shared memory load was not coalesced. So if i just recall our original diagram of how the 

different locations in the input matrix, output matrix and the tile was getting accessed. So let say 

this is the tile, this is the output matrix so from one input block one row you are writing here row 

wise and then you are loading the data from the tile column wise and writing in the flipped block 

location row wise right.  

 

So this loads from shared memory are not coalesced and that would create bank conflicts in the 

shared memory. So what is a bank conflict? The shared memory is not a contiguous piece of 

memory element rather it is arranged in set of banks. So in modern GPUs we as we know that the 

GPU families the NVIDIA defined is what they call as compute capabilities right. So since we 

are working on a device with compute capability 3 and above we have a share memory with 32 

banks. 

 

So essentially what is the share what is the idea for memory bank. Now a memory is arranged 

into this different sets let me redraw this picture in a nice way. So the memory when I say that 

the memory segment is bank is not that I have a one big large chunk of physical memory. Rather 



than that the physical memory is split into smaller chunks of physical memory and they are all 

accessible in parallel by the hardware right. 

 

So let us say this is the read write box and you can access all this banks in parallel. What is the 

good thing about this when you read or write data into the shared memory let say this is bank 0, 

this is bank 1, this is bank 2. Since you can access them in parallel and if your arrangement of 

data let us pick out some array it is a0, a1, a2, like that there consecutive location right when you 

are reading or writing the data consecutive value will be distributed across banks like this right. 

 

So when you are writing the data consecutive location gets distributed now the amount of data if 

you are writing if you same as the number of banks then there is no conflict in terms of the 

writes. So what do I mean by conflicts?  
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Think in this fashion that since I have a warp of size 32 and we devices of compute capability of 

3 or higher. I have got 32 memory banks so at the entire warp of thread if they are actually going 

to store data or load data to or from the shared memory in consecutive location all those 

locations going to map to different memory banks right. Because I have 32 memory banks, 32 

consecutive locations suppose I am loading data from this 32 locations using a warp of 32 

threads I will simply access all of the banks in parallel and I will load the data right so that will 

be 1 load.  

 



But consider the situation that when I am doing the shared memory loads in our case. So I am 

loading the data from a column in the matrix and column in the tile size is 32 cross 32. So 

essentially the column will get what we call as a 32 way conflict because the entire column is 

located in one bank right. So then the question comes that how much overall number of loads 

would happen. In this case in this specific case we see that it is almost a 16 x time required right. 

 

Now this as we have discussed with people in NVIDIA forum this is something that is 

architecture dependent. Although this is a 32 way conflict that we are getting still the memory 

banks have got a read write speed with which they can actually read or write 64 bits per cycle. 

Now since in this case our data is each of size 4 bites. So although the conflict is 32 way the 

number of loads are increasing by the factor of 16 because the data size is half with respect to 

whatever I can load from the bank using its bandwidth. 

 

Since in this case for (()) (07:06) it is 64 bits per cycle that means 8 bytes in parallel now what 

does that mean to be more specific suppose that I am working with 8 byte data. If I am working 

with 8 byte data let us say double procession floating point. And then when I am trying to load 

such a column of data, the data sizes are 8 byte with all the column all the data positions located 

in the same bank. I have a 32 way conflict and then since the data width is equal to the banks 

band memory band width per clock memory band width that is the number of bits that I can 

access for clock cycle. 

 

So in each load operation I will load one instance of the data. So in that case I will have 32 x 

increase in a number of loads. In this case it is 16 x right. Some other interesting activities as you 

can see that since we have got nice access patterns with respective global loads and stores. So 

both of them are small there is no increase based on the problem that we have been discussing.  
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So this is the good thing about the shared memory and also we have pointed out about the bad 

thing due to bank conflict I have got a huge increase in the number of shared memory loads 

right. Now how do I decrease this because this again is leading to some loss of (()) (08:35) 

whether the question is whether it is possible to some how rewrite the code in a such a nice way 

that this issue of shared memory bank conflict can resolve. 

 

Again I will just summarize this idea of bank conflict which is similar to memory access 

coalescing so in a global memory I can access consecutive location. Similarly when I am and if a 

warp can access consecutive 32 locations in parallel and so if that is the amount of data that is 

required. It can be fetch from the global memory one global memory transactions similar for 

writes. 

 

Coming to shared memory it is arranged in banks and consecutive locations consecutive data 

points are written by the threads in a warp in a consecutive bank. So if I have 32 banks and 

suppose I am going to write 32 consecutive data points it will be written consecutively in across 

the banks. But unless it is there it is such a regular access pattern. For example suppose I am 

trying to write data in a column wise way write in a read or write in a column wise way that 

means suppose all the threads in the warp are trying to write for the tiles column that means or 

read from the tiles column.  

 



That would mean both read or write operation I am accessing in the same bank. And that gives 

rise to 32 way conflict. Now this 32 way conflict is also something I will like to explore a bit. So 

what do I really mean by this. So for that let us take an example for some other cases of conflict.   
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So consider some other threads so let us say thread id 0, thread id 1, thread id 2, thread id 3 like 

that and let say this is my set of memory banks B0, B1, B2, B3 trying to write data in a column 

wise way per write in a read or write in a column wise way that means suppose all the threads in 

the warp are trying to write for the tiles column that means or read from the tiles column that 

would mean in both read or write operation I am accessing the same bank. 

 

And that give rise to 32 way conflicts. Now this 32 way conflict is also something I really like to 

explore a bit. So what do I mean by this? So for that let us take an example for some other cases 

of conflict. So consider some other thread so let say thread id 0, thread id 1, thread id 2, thread id 

3 like that and let say this is my set of memory bank B0, B1, B2, B3. Now if the access pattern is 

like this regular then there is no bank conflict right is where already discussed. 

 

Now consider some other access pattern for example let us say the threads access in stripes of 2 

right. So T1 and T2 access a separated by 1 hop sorry T0 and T1 access are separated by 1 hop 

right. And then let say T2 and continue this pattern T1 and T2 access is again separated by 1 hop 

right. And then T2 and T3 access its separated by 1 hop right. So let us consider this pattern 

right. Now let us understand what is the number of bank conflict I get.  



 

Since I have got 4 threads accessing 2 banks right. And for each bank I am looking for 2 

transaction, so this make a 2 way conflict right. Now consider this pathological scenario that 

every bank is considering to access data or from bank 0 like happened in our example that we are 

accessing the tiles column and that would mean the tile width is equal to the number banks. So if 

I do the modular mapping then all the data in the column will fall into the same bank and that 

would give rise to this scenario. So considering the whole number of banks here I have a 4 way 

conflict.  

 

Similarly this problem we have a 32 way conflict. So this is how the idea of the share memory 

conflict builds on.  
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Now just to get some idea that ok suppose I am just have I will I resolve find out some way to 

resolve the bank conflict. And I want to compare that with the normal share memory copy 

operation. Before we get into the way we do a share memory bank conflict resolution let us look 

at some performance trigger with respect to a simple copy operation. So you have a input matrix 

you access that input matrix using the idea of tiles.  

 

And then I mean so as you can see the similar code that we have again where we continue with 

our definition of tiles and blocks. I mean I can have a blocks continuing I mean which are 

addressing a multiple tiles or 1 block 1 thread block contains the same number of threads as in a 



tile both are fine in in one case the loops will be active and in other case the loop will only iterate 

ones. But what is going on here? This is a simple copy kernel that means the data is copied tile 

wise right input data gets in to a tile and then that tile full of data will goes into the 

corresponding output matrix right. 

 

So this is the simple accesses we are doing here. Now we want to compare this simple copy 

kernel with the situation of optimization where we are doing a bank conflict resolution.  
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So first of all we make an observation that if I am just doing memory copy from one input matrix 

to output matrix what is the time taken if I am using shared memory. As you can see it is some 

3.8 milli 8 milli seconds which is much smaller if I compare it with my results on shared 

memory based transpose which was 6.1 for 2 right. In both cases we are using shared memory 

but I can attribute this difference due to this bank conflict why?  

 

Because in both cases my global memory loads and global memory stores are all coalesced. Here 

also as you can see that the global memory loads and stores are all coalesced along with shared 

memory loads and stores right. So my problem with the code where I am used the shared 

memory but I compute with the transpose was that. The shared memory are bank conflict while 

doing the loads for writing in to the output error. So how do I resolve this bank conflict is the 

primary problem we want to solve it here.  
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So the idea is very simple keep the code exactly same as it was increase the tiles dimension by 1 

in 1 direction. But the question is how does this really help ok. 
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So let us try to figure out that what is the effect now if I increase the tiles dimension by 1. So this 

are access pattern that we have already discussed but now we are trying to figure out that for this 

tile when I draw a magnified picture of tile so this dimension in the x direction has been 

increased by 1 right. So let us try and figure out first of all I just like to repeat we have just 

increase the dimension nothing else has change in the code.  

 



Which means I do not really use this extra location for copying data by any of the threads or I do 

not really load anything from this location and write back somewhere. So this is the last column 

which I do not really access I do not write here I do not read here right. But I use the rest of the 

32 cross 32 locations for whatever earlier operations I was doing basically all the same operation 

right.  

 

So when I have written the data here let us understand for one block I have done a row wise 

access and return the data row wise right. That would mean the threads and the corresponding 

locations if I just write the ids of the locations, they are getting mapped nicely like this. I do not 

write anything here and that is how it continues right. This is what is going on right. Point is now 

what happens to the arrangement of the data in the banks.  

 

Now in the x dimension of that tile I am mapping all this locations to 32 banks and I have 33 

locations to map per row right. So in terms of the banks how really is this mapping happened. So 

this data would go to the data for the location 0 goes to bank 0 like this up to bank 31. And then 

this location is mapped to 0 right and that was has changed. So now if I try to map this layout in 

terms of the shared memories actual lay out.  

 

So let us rewrite the bank locations B0, B1 I am just writing the shared memory banks now right. 

So I have up to B 31 right. So I load the 0 as data first data second data then up to thirty first data 

and then I have a do not care value in B0 then the thirty second data in B1, thirty third data in B2 

like this up to 63 sixty third location right. And then now sorry so since the thirty second location 

is in B1 so what do we have here it has to be the sixty second location.  

 

Please understand this, this is very crucial. Since I have putting a do not care here so now your 

B0 starts getting mapped from B1 location right. So sorry here it should be shifted to 62. But 

then where does 63 goes, 63 would now get mapped in B0 and then after that there was a do not 

care right. I am removing this it was initially drawn just to understand the banks but since I have 

physical picture just to avoid the confusion, we removed this.  

 

This is the enlarged view of the tile and this is a corresponding mapping in terms of the actual 

share memory banks. So sixty third data point is in bank 0 after that we have this do not care. So 

then 64 data point is then in bank 2 now if I continue like this so this is in B2. So what should we 



have here? Here we should now have the ninety third data point right. So that would bring the 

ninety fourth and ninety fifth data points in banks B0 and B1 and here you get a do not care. 

 

Now consider what happens to the load instructions. So I am doing a load by column right. So 

now I when I am trying to access the data look at the loads that will happen right. So in the first 

load I get all the data right so essentially first of all let us point out some data points that I want 

to load. Assume that I want to load from this column right. Because just to keep consistency let 

us go back to the original code and see what we were really loading.  

 

This is the code without bank conflict and it is just that I am are loading from a column right. So 

as a representative column let us just take a first column which is going to which was in our 

original implementation where I did not increase the width of the tile. All these data was going to 

bank 0 right. 0, 32, 64, 96 all were going to bank 0. But now what is the location as you can see 

0, 34, 64 like this it is all now distributed right across the banks. 

 

So you have 0, 32, 64 and like this up to the n everything is distributed across the bank they all 

get out with the load 1 right. Similarly in the next what do I get? In the next column what do I 

have? 1, 33, 65, 97 if you look 1, 33 here you will have 65 and similarly like that so this is the 

output that you will get in load 1. And in the next axis you are going to get all the data in the 

second load and so on hence so forth.  

 

So now due to this insertion of an extra dimensional extra column in the tile I have got memory 

padding in the shared memory and this memory padding is actually removing the conflict that 

was happening in each load instruction of the column in the tile when I look at that axis in terms 

of banks I am always accessing the all the banks parallelly. So I do not have any conflict by 

loading the values for column from the bank shared memory.  

 

So this work like magic but it is only that simple all you would do is you modify the tiles 

definition by doing a padding of an extra column. It changes the entire arrangement in the bank. 

So every column of the data actually is now diagonally distributed in the bank and due to the 

distribution you have that column uniformly distributed across different banks and they can all 

be accessed using a single load instruction.  
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So that is the wonderful optimization in I would say with that we have very reduced execution 

time as you can see it is almost 4.1 milli second and the all the shared load, shared stores, global 

load, global store all are coalesced right. And as you can see this is almost similar in execution 

time it is only 3.85 with the normal copy operation using share memory right. So here you have 

successfully resolved all the bank conflicts and your code executes with very minimal execution 

time and it is almost comparable with a normal simple copy operation without doing the 

transpose right.  

 

This is how if we understand the memory hierarchy correctly we can remove bank conflicts and 

do better optimization with respective data.  

(Refer Slide Time 26:14) 



 

With this we will like to end before that we would like to revisit some other example. If you 

remember the way we spoke of transpose we did a 2 level optimization in the transpose right. 

The first computation we did was just to change the x and y in the axis. In a such a way that you 

do not completely flip the x and y and y and x. But you compute the x and y for the original 

transpose kernel using shared memory such that they represent the flipped block location. 

 

And then in the flip block location you flip while reading from the tile and the reason for doing 

that was you achieved very nice patterns with respect to read and write. But you did a overall 

matrix transpose. Now if we require that you do not need the entire matrix to be transpose you 

only need to do a tile level transpose. What initially I mean is so suppose you have this entire 

matrix you do not want to change the relative position of blocks you just need to do local 

transpose here inside the tiles. You want to flip inside the tiles right. 

 

So that would mean all you do is you do not do any re computation of the block ids. But rather 

you access the data I mean from the input load to a tile and then you read from the tile column 

wise and write to the output data, without doing a intermediate flipping of blocks it will just 

repeat. If you remember optimization which is here so you said 2 level thing right. First I flip the 

blocks and then I flip the location of read from the tile consider this is not done.  

 

So you do not flip the block. So you are reading and writing from the same block but while 

reading from shared memory tile you have flipped that means you read column wise. So that 



would effectively do a fine grain transpose as we call it here. So what essentially I mean is I do 

not I do a local transpose. That means I do not change the block position but inside the same 

block I am now reading it in a different way and writing it back. 

 

So I am effectively just inside the same block I am doing the transpose operation. So you 

compute the index to read if you are standard and then you read the data I your definition so here 

defining block as the thread I mean thread at the tile using the name block here and then from 

this you write using the flip pattern that we discussed earlier. Suppose if we do not want to do 

this but you want to do a block level transpose that means you just flip the location of the block 

but you do not change the internal arrangement of data. 
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Again if I go back here so if I do not do this operation then I do not flip the position of the block. 

Suppose I do this operations but then I do not do this flipping here. I do a normal read write what 

would that mean I flip the location of the block by this, but then I do the normal read write. So 

that means inside the block relative offsets of the location do not change. So that is what we can 

call as a coarse grain transpose. 
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So for fine grain transpose we have an execution time has given here and then for the coarse 

grain transpose as we discussed so as you can see I computed the index in first that is how to 

read right. And then I flip the block locations using the original code segment I show, and I use 

this flip block location to compute the index out where to write and then I do a normal read 

write. 

 

I read from i data using index into the block or the tile and then from the tile I use a normal 

access as you can see there is no flipping while reading and writing from the tile. You straight 

write to the tile you straight read from the tile. You use index in to read from index i data, you 

use index out to write to odata. Now the difference is index in the original usual consecutive 

location index. 

 

But when I use the index out I have flip the blocks using the first part of the switching. But I am 

not using the second part of the switching. Here I do not read by column I read by array read by 

row sorry I ready by row from the tile. So this is the coarse grain transpose that mean this block 

comes here and some relative location of data remain same with respect to the block right. So 

this are also associated operation that you can look into and we also provide the execution time 

and other things of that with this we would like to you can actually look into this data points try 

and compare with this we like to end this lecture thank you.  


