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Hi welcome to the lectures on GPU architectures and programming in the previous lecture we 

have stared our initial discussion on profilers like NVPROF. So this is a profiler which 

essentially you can execute in command line it is available both in Linux, Windows, and OS X 

mac OS version. It can collect statistic pertaining to different program events and metrics at the 

same time.  

 

It is a standard line tool and does not require the programmer to use the CUDA events API. This 

is important because earlier we discussed about how to use the CUDA events API which actually 

samples the timings from the program and using the CUDA events API you can actually catch 

the timings. But that actually we mix is a burden on the programmer because then you actually 

have to insert suitable timing codes or CUDA event calls inside your program. 

 

So in case you do not want to use that path this is an alternate way to use it. That means you run 

your program under this profiler setup. We will just see some examples that how does it differ. I 



hope you all remember how to use the CUDA events API. You can consult or earlier lectures 

where you showed how I can insert this kind of suitable data types from the CUDA event API 

and sample out time from the CPU or the GPUs performance counters. 
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So here is an example where what we are doing is we are executing the code of transpose right 

the host this is the original executable. I am passing it parameter 0. So that would execute the 

naive row kernel right and if I pass it transfer parameter 1 it will execute the naive column 

kernel. If you can just see so here case 0 was for naive column case 1 was for naive column. So 

this is our original transpose executable. But when I executed I do not I do not execute stand 

alone. 

 

I execute this with the under the NVPROF profiler I pass it these different parameters which 

essentially say what are the performance statistic I am interested in. So essentially it will run this 

kernel possibly multiple times and try to compute some statistics out of it and give me the 

required architectural parameters which I am interested in. So here essentially when I specify 

global store and global load throughput that means I am asking the profiler that ok you provide 

me with these statistics.  

 

What is the number of loads and stores happening? And what is the bandwidth that is getting 

utilized that means how many loads and stores are happening per second in terms of how many 

bytes of data is getting load and loaded and stored per second or this is the minimum and 



maximum ranges and all that. So you can take a minute and just look into the statistic that has 

been provided here by the by the profiler. So it is separately giving me the global load and global 

store throughput values.  

 

The number of bytes the maximum that have been written or being read per second and also 

minimum. So essentially this is profiler which is going to run the code multiple times and do a 

statistical observation out of it.  
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So the same thing we will just so just if we look at the performance statistic once again and try to 

match with our original ideas. So when you are doing naive row essentially your number of loads 

will be much smaller than the number of stores you are doing because you are loading by row 

which would be coalesced and you are storing by column. And as you can see that the idea quite 

really matches here right because the load throughput is quite low whereas the stored throughput 

is quite high for the naive row implementation.  

 

Now if you look into the other implementation of the naive column. So if you just remember our 

original program if the user passes that command I mean the command line option of 1 with the 

executable transpose. Then that one will get into the RV1 part right the RV met the RV part and 

that would transfer to I kernel which will indirectly get into the switch part switch statement and 

it will actually give the function pointer to the kernel it will make it point to the kernel for doing 

the naive column execution right.  



 

So again when I execute that code with this option 1 under the NVPROF profiler I again get the 

load and store throughput. So now since I am doing a now a naive column implementation so I 

am loading by column that means that would be too many loads and the number of stored would 

be much smaller because the store is now coalesced and it gets reflected right. As you can see 

that the throughput for the store is much smaller whereas the throughput for load is much higher.  
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Now with a I mean the statistics that gets collected by the NVPROF they can actually be 

rendered into a nice GUI based tool called NVPP NVIDIA visual profiler. So this profiler this 

software provides a GUI based tool for analyzing CUDA applications and it supports a guided 

analysis more for optimizing across kernels. So I can actually get the statistics from the 

NVPROF. The NVPROF provides the minus analyses minus matrix option when I execute 

NVPROF which can capture all the GPU matrix for use and this statistic will be kept actually 

where stored in a format which is usable by the visual profiler.  

 

So next when I run the visual profiler it can render the statistic in a nice manner and it can help 

me to analyze the performance from the GUI right. Now of course I can have to use this minus of 

flag with the NVPROF dump a log file and that has to be imported to NVPP. So you can just 

learn to use this thing.  
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We will just show that how when we run this original NVPROF commands we run this in 

NVPROF command the outputs can actually be rendered through NVPP and through this kind of 

a nice UI. So this is statistic profiling statistics for the naive row kernel and as we can see we the 

exact timings for the start end their provided. And we also have the execution duration some 

8.017 millisecond and similarly and also a the statistic we have asked here is for the different 

utilizations.  

 

So compute utilization the memory load store utilization they are actually plotted nicely. Since 

this is a less compute intensive but more communication intensive load store intensive kernel and 

that can quickly be gouged from this statistic chart that has been provided right. So we have lots 

of memory operation but much less number of compute operations here. And significant amount 

of very large number of memory loads and stores here. Similarly I can also do that for the load 

by column case.  

 

So this is a naive column implementation as you can see naive row I have some timing which is 

8 milli second for naive column I have even more timing I even more timing requirement which 

is around 14 milliseconds. Now there is interesting question here right because of course in one 

case the naive row case the loads are coalesced, but stores are not coalesced. Whereas in the 

naive column case loads are not coalesced but stored are coalesced. 
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So if I do the compute analysis, I also can get the charts here in terms of utilization. So this is the 

utilization chart here if I plot them side by side as we can see the loads stores apparently if I just 

provide them the number of the utilization for the load store is further small in the naive column 

case with respective to the naive row case.  
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And that actually matches with the execution time statistics because from our observation for the 

naive row case the execution time was smaller it was 8 milliseconds. Whereas for the naive 

column case the execution time is much larger it is 14 milliseconds. So it is much larger and that 

gets reflected here in terms of the utilization of loads stores in case of naive column the 

utilization is less.  
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But again if we come to doing the comparison with respect to the memory band memory band 

width that has been confused and that has been consumed here for the naive row as well as the 

naive column implementation. Let us go one by one so for the knife row implementation this is 

what we have. So as we can see that we have synthesis by row so the number of global loads is 

less.  

 

The number of global stores are much more and so this is basically the number of global loads 

that we are having and then this is the this also provides you with a statistics of the L2 cache that 

how many reads are performed by the L1 from L2 cache and similarly how many writes are 

performed by the L1 to the L2 cache right. Now something interesting as you can see that the 

number of L1 reads is much more with respect to the global loads right it is of course 4 times.  

 

Now what is the reason for that? The fundamental reason is that in G in our GPUs the L1 is 128 

byte wide. The cache line of L1 are 128 byte wide where so the essentially that is 32 times 4 

bytes so that is equal to the global memory transaction width. So the L1 which is also is 

configurable as L1 or share memory. The width of the cache line is same as the global memory 

transactions.  

 

But in between I have the L2 cache even unified L2 cache across the SM we for which the lines 

are 32 bit width 32 byte width right. So essential when the L1 has to read the number of reads is 



4 per unit and in that way whatever is the number of global loads since the number of global 

loads have to go through L2 to L1. L1 is why having a width which is matching the load width 

right the load width which matches with the warps read width.  

 

But in between you have a L2 cache which is 32 bytes it is having cache lines which are 32 byte 

width. So you have a factor of 4 increase in the number of L1 reads require from the L2 right. So 

overall the if you can look at here since this naive row so the number of global loads is small the 

stores are larger and similar things we can also say for the L1 reads and writes. The number of 

reads is small the number of writes are much more which is (()) (12:17) coherent with the 

number of stores here.  

 

But then if we go to the naive column implementation we similarly see that this other way 

around the number of global loads is much more because they are not coalesced they are load 

from columns. The number of stores is much smaller and similarly so when the L1 is reading 

they are same as the number of global loads but when the L2 writes when the L1 writes to the L2 

cache I mean of course it is much smaller in number than the number of reads.  

 

But again we have this factor of 4 increased when I look at the number of times L1 writes to L2 

and the number of stores right because again we have this multiplication factor of 4 here because 

of the width issue that I just discussed. So this would be advisable at this point that you keep 

these things in mind that whenever doing reads and write what is the width of the cache lines and 

what is the width of the global memory transactions and these things may or may not change 

with architecture families.  

 

This is something we need to be aware of if you have to correctly interpret profiling data from 

any execution run.  
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Now this still does not really explain to us that why the number of number of seconds or 

milliseconds and the total amount of time taken by the naive row implementation was much 

smaller with respect to the naive column implementation because in both case I have some 

penalty. In one case the penalties with respect to the loads and in the other case the penalties with 

respect to the stores.  

 

So if you do a latency analysis in using the NVIDIA visual profiler you see that it provides the 

reasons why instruction stall and it prevents the warps from executing. So we always know that 

the we have lot of warps to execute but warps stalled due to certain reasons right and the reasons 

can be very for example the pipeline maybe busy. If the pipeline is busy then the compute 

resources that are required by the instruction for the warp is not available right. So the warp is 

stalled. 

 

Then the issue can be with constant that some constant value is going to be required and that 

constant loads is blocked due to a miss in the constant cache. So as we know that the constants 

can be stored in the separate constant cache rather than using the L1 or shared value L1 or shared 

memory. The other issue can be of memory throttling like there can be large number of pending 

memory operations which prevent further forward progress. 

 

Lots of many memory operations are pending for a warps so it has to stall. Then the texture 

subsystem if it is already fully utilized and so this is more for the graphics part if it is fully 



utilized and there are too many outstanding requests from the texture systems then also warps 

can get stalled. And of course the other thing is a warp can be blocked at a sync thread call 

because the other threads which are part of the block have not part and hence part of the other 

warps have not progressed up to the synchronization barrier.  
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So the instruction if the if there is a stall in any of given cycle then it prevents the warps from 

executing and the different kind of instruction stalls that can happen can be classified into the 

following type like this instruction which in this case if there is a stall then if there is then the 

next assembly instruction will not be fetched right. Now of course there can be execution 

dependency like an input is required by the instruction and that is not available. Of course there 

can be memory dependency that I require the data points from the memory for I require to store 

data point into the memory.  

 

It cannot be done because the resource says that a memory system is quite busy and then the 

warp is ready but the warp scheduler is not ready to issue it. The warp scheduler may be busy 

with some other threads which it has already issued. So there can be these several reasons right 

due to which warps may stall from execution. 
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But if we do a analysis of these different types so as you can see we have all these listed types of 

different reasons for which the warp can stall from execution and if we do a latency analysis of 

both the kernels that we executed the naive row and naive column of kernel and see what was the 

primary reason for the warps stalling. Then we can see the naive column kernel has significant 

amount of stall due to the warps not getting selected and the memory throttling issue.  

 

Whereas in the naive row whenever there was some stall it was primarily to do to the pipeline 

being busy executing some operation right. Now observe something that if the pipeline is busy in 

executing some operation it really is not a bad thing because still you have progress in terms of 

operation. But when you have the memory throttling issue if you want you can just have a look 

into the memory throttling issue.  

 

So essentially you have large number of memory operations that are pending right or memory 

dependency issue that sperate that loads store cannot be made because the required resources are 

not available. For example I am reading from multiple banks or 2 warps going to read from the 

same bank but there is a I cannot do that right. So due to all these separate issues I can have stalls 

happening but suppose take this example in case of naive column memory throttling are a very 

big issue.  

 

That means there are lot of pending memory operations and the warp not getting selected is also 

significant big issue. Now why would that happen. If you remember the naive row 



implementation you are able to load very fast. Since you are able to load very fast the warp 

would make progress. But they will get stalled in the right part. But here your warps cannot even 

make progress because you have got the issue that you are loads are getting stalled because the 

loads are not coalesced in case of naive column right.  

 

Since your loads are not coalesced the warps really cannot start executing or at least copying the 

data. So that would actually create the more significant proportion of the scenario that memory 

throttling is happening and the warp is not selected. Now of course every kind of stalled has a 

corresponding penalty but things related to the memory will always have the larger penalty and 

since you are having lot of more load operations which are stalled that also contributes to the 

naive column implementation being faster slower in this case.  
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Now of course there can be further optimization that can be made using the shared memory or 

shared memory based implementation of the code. Now this is something which we will like to 

take up in the next lecture so we will like to see that how the shared memory can actually help in 

doing that transpose operations because still now all we have done is looked into the transpose 

operation from the point of view of global memory loads and stores. So with this we will end this 

lecture here thank you.  


