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Hi welcome to the classed of GPU architectures and programming in the last lecture we have 

been discussing about how an operation like matrix multiplication can be accelerated with proper 

optimization involving the shared memory. And in this lecture we will continue with some more 

examples may be bit more involved and we will also try to show that how you can able to 

perform some monitoring based on the optimizations and figure out how will optimizations are 

working for you using some profiling primitives and Nvidia provides for you. 

 

So as an example in the last case we consider the operation of matrix multiplication in this case 

we will consider this example of matrix transpose. So if you remember from your high school 

algebra a matrix transpose was a simple operation such that suppose you consider a matrix a is 

given to you and you want to create a A transpose. So the way you would be defining the entries 

of transpose would be that whatever was an entry of the ith row jth column aij in the original 

matrix in the transpose matrix they should be the entry in the it should be the same entry in the 

jth row and ith column. 



 

So the way it is going to work is that in the transpose matrix if you consider any entity in the I jth 

column it should be same as the entity in the jith column of the original matrix right. So this is 

how it would hold at the element level that in the so essentially if we take an example has been 

provided here so as you can see that we are considering an original matrix which is like this the 

one that is given on the top left and when I do a transpose essentially all the ijth elements in the 

original matrix become the jith elements in the transpose matrix right. 

 

So essentially I can just say that the diagonal is remaining the same and the rest of the elements 

are just flipping over to the other side. So this comes here this goes here and similarly for all the 

other entities here but how is it going to really happen in the underlying architecture that is the 

important question here right. So if I look at the arrangement of this matrix with respect to the 

memory then for all practical purposes this is in derivative of C so we have a row measure 

implementation right. 

 

So your matrix is finally resident in the GPU memory in a simple consecutive locations for the 

different elements in the row followed by the next row so on and hence so forth right. So when 

you are really doing a transpose operation things as you see that which looks very nice in the 

original 2D representation you may lose that simple property here. Of course in terms of the 

matrix is fine but here things will be happening in this single 1 dimensional array which you will 

be accessing using the row and column indices of the original matrix that actually you have to 

again compute using the block and thread indexes of the original matrix. 
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So if we consider a simple a simple vanilla matrix transpose function in C in CPU only function. 

So how really you are going to go about it you will just write a cascade of loops right 1 loop is 

iterating over the rows using y’s right so the outer loop is iterating over the rows. So this iy index 

is iterating over the rows and the inner loop is iterating over the columns per row and inside what 

you are doing is you have been given an a pointer pointing to the input matrix and you are going 

to write the data into the output matrix using this out pointer. 

 

So essentially you are just moving you are just copying elements from the y xth location to the x 

yth location right. So I can just say that this is in terms of the representation of this course 

whatever is in the y xth location the index in y axis and index in x axis gets flipped to index in x 

comma index in y location right. So this is the some of the examples taken from this book by 

professional book on professional CUDA C programming here. 
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Now if we consider a GPU version of a code what would happen of course since in the CPU I 

would have cascaded loop and so it is a sequential loop and it is iterating over the 2D 

arrangement of data points and using the loop iteration variables and doing the transform notion 

from the in matrix to the out matrix right by accessing this entities. But when it will be done by 

the GPU it will be again the work will be part thread basis so you will launch a kernel I mean as 

is always done as you will launch a kernel and you will be find the partial activity. 

 

So every thread would need to compute it is ix and iy values that is on which location of the 

matrix is going to work right and then is going to copy the corresponding location from the in 

matrix to the out matrix. So the every thread which discover which location it is supposed to 

work 1 and then is going to copy here in the corresponding location where yeah. So whatever 

was the row it was iy it changes to the column offset here and whatever was the column offset is 

going to change to the row number here right. 

 

But so again we are calling it as a naïve implementation because I am not making use of any 

shared memory another thing of course we think that it can be optimized further using such 

implementation we will get into that. But here observe what is happening so essentially I call it 

as naïve row implementation because we are loading rows and storing by columns why do I say 

that values we are loading by rows. 

 



Because think how the warps are getting formed so you have thread id’s for consecutive 

locations in the rows I mean you have a warp which is containing thread id’s 1, 2, 3 like that and 

they are accessing in the input matrix they are accessing consecutive locations right and forming 

a warp. And they are loading the data from this consecutive locations which would mean the 

loads are coalesced. 

 

So whenever this thread inside a single warp this thread is loading this data point the next thread 

is loading immediate next data point and like that. So this is going to get coalesced but what 

happens when the thread in the same warp are going to write. So here whatever in for this 

example I am trying to draw the so essentially we are picking up items at the lower level with a 

large row index right. 

 

So that large row index would change to a large column index here so may be somewhere from 

here I would be starting to drop the elements right and we are having offsets like this right. So 

this column offset values would be changing to row offset values right so if I say I have a large 

row index and a small column offset so that would transfer to a small row index and a large 

column offset. 

 

So essentially this thread would be storing the data somewhere here the next thread will be 

storing somewhere here and the next thread would be storing somewhere here like that. No wait 

a minute let me draw this with a bit more accuracy sorry.  
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So consider a fresh picture here we have the original in and outs this is my in and this is my out. 

So let us assume that I am doing again same example I am doing loads I am accessing the warp 

is definitely accessing consecutive locations in the row why because inside a warp this y value I 

mean so since the warps are going to access consecutive locations and the consecutive locations 

would mean consecutive locations in the row in general. 

 

So as long as the i mean the warp is the size dimension of the matrix is divisible by the warp size 

right so look observe you consider that you are loading data from this point in a single warp 

right. So these are your loads and they are all coalesced. Now what happens when the threads are 

going to write so this in index is going to be written like this right. So you have a large offset 

here with respect to y and then for the same row offset let us give this some name let us say this 

phenomenon happening for some value of iy and let us say ix values are 1, 2, 3… right. 

 

So now when you think that where are this coalesced load values the values which have been 

loaded by the warp in a coalesced memory access where are they going to be get stored in the out 

matrix that would be interesting why. Because now this ix value flips to become the this iy value 

which was the row index flips and becomes the column index right. So here let us consider the 

first thread here so it was loading data from a location with iy, 1 right so that would mean it is 

now going to download that data at in the out matrix at a location 1, iy right. 

 



So that is it so let us say this is the first row so the data would be coming here what about the 

next one the data was it iy, 2 so it should get in 2 comma iy next 3, iy like that right. So 

essentially whatever you loaded consecutively are going to get stored in the iyth column from the 

iyth row. So essentially you are doing a load by row and you are storing the data by column. 

Now of course if you think from the access patterns all this rights are non-coalesced right. 

 

Technically considering a big matrix all these rights will require separate global memory 

transaction right. So that is why you will have coalescing the good thing about the goodness of 

coalescing will help you with respect to the loads but since you are storing by columns you will 

be having a penalty here.  
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Now consider the other scenario where so as you can understand that this was a simple GPU 

kernel where all we did with respect to the original CPU kernel was we removed that 2 loops and 

just define a part thread activity. Part thread activity was that okay you just load values and put it 

in the transpose location in the output matrix. But I have 2 option now I have discussing here the 

first option is you just load by row and store by column and since this is one option of course I 

have the option why do not I load by columns and store by rows.  

 

So all that will happen is that you are access expression is just going to change so this is the 

example where you are going to load the data by column and store the data by row. So I can just 

to re-use the same picture here may be so since I am loading by column I can say that this is my 



in matrix this is my out matrix and I am loading this data points from the column right and what 

would coalesced would be write right. 

 

So I will have memory access coalesced for write by the same warp so this is now write this is 

now read. So I have now got separate global memory transactions for each read operation or 

store operation or load operation right. So now I will have the advantage of coalescing while 

writing since I am storing by rows and I lose the advantage of coalescing in terms of reads. So as 

we can see this are the 2 options I can have but in both cases either my reads are coalesced or my 

writes are coalesced. 

 

So that would give me some parallelization in terms of reducing the global memory loads or 

stores but I do not get both okay. So we have explained the idea of this shake macro and let us 

look at how to wrote the driver code including this macro. 
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So essentially we are trying to write a simple driver code here which is the host program where 

we will be using this check macro to nicely capture the device properties of the underlying GPU 

device and print them up. Next we set up the input errors and we are trying to write a single 

program through which we can the user can input what you wants as the whether he wants to do 

a transpose by naïve row or by naïve column and that would be the user preference coming 

through which will be captured by the main program using the argv parameters. 

 



So essentially I am assuming you are all familiar with handling command line arguments right so 

the i kernel variable is matching its value with whether I mean if I am using this q2i function to 

actually process the argv string and this argv string is converted from the string type to a 2i in the 

at k type and it is stored in the argv i kernel parameter.  
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And then so that is actually storing the users preference of what kind of operation you wants and 

the next thing we do is we just set up the normal grid and block launch parameters for the kernel. 

I mean what is the block dimension block x block y definitions and grid dimensions in terms of 

so the way you want the number of blocks to be parameterized like that so this is how we are 

writing that what should be number of blocks.  

 

I mean essentially you divide the nx by the block x and ny by the block y right. So that gives you 

this 2D system will give you the total number of blocks and in here you have the definition of the 

thread block. I mean how the blocks are arranged in terms of block x and block y the next thing 

you do is you make suitable allocation from the host memory side so your dispose programs will 

also be available to you and then you make this call assuming that there is a function which is 

going to allocate the host array right.  

 

This hos array hA with the input with all the input values stored and the dimensions are of course 

nx cross ny for this array and then you allocate device memory in dA and dC. So you want the 

host array to be transferred to the device memory using this CUDA mem copy command so in 



device you are defining 2 memory locations dA and dC. In da you are copying the host array 

using the CUDA name copy command and everywhere you are using the check macro to just to 

check if there is any system error at now and then the check macro will nicely print the 

corresponding statement for debugging purpose. 
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And here we use the function pointer to actually pass the user’s input choice because I have 

already captured the user’s input choice using this i kernel integer right. So argv1 is containing 

the first option provided is containing what is the functionality that the user want to execute 

right. So then here through a switch case we are trying to match this value of I kernel whether it 

is 0 or 1 and accordingly depending on what is the user’s parameter we are trying to set this 

function pointer kernel to the and provide it with the pointer for the device function transpose 

Naïve row or transpose naïve column right.  

 

So essentially we are using this we are setting this function pointer up here so through this switch 

structure and the user as already passed what is preference in terms of the in terms of this argv 

parameter which have been passed to kernel right. So coming here we are finally running the 

kernel so as you see that now this function pointer kernel as been suitably initialized it has been 

provided with the address of either transpose naïve row or the transpose naïve column function 

whichever you want and then this kernel will execute and of course this are all asynchronous 

statement here like the kernel will be launched in the CPU will be waiting for the last error 

message if there is any. 



 

And then once then this CUDA name copy command will again be executed to get back the 

value from the GPU of the transpose get back the transposed kernel value from the GPU side 

right.  
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Now in this example we will demonstrate usage of a profiler from NVidia like how to do a 

command line profiling using this nvprof tool and how to figure out what is the performance of 

your program. So we with this initial idea that we can do performance of our programming using 

this kind of nvprof profiler will end this lecture and in the next lecture we will go into further 

details of using nvprof for doing CUDA kernel profiling thank you. 

 


