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Hi welcome to this lecture on GPU architectures and program in the last lecture we have been 

providing you with an introduction on how GPU memory access is managed and what is the 

impact of the way in which GPU is accessed with respect to performance of your program and 

how this performance factors changed with different variance possible for access expressions 

inside your program. 

 

And but of course whenever we are talking about the performance you need a metric through 

which you can actually measure the performance of your program. So even if my metric is 

execution time how do I really measure the execution time of a GPU program. For measuring 

execution time of programs one standard way is to profile the execution of the program. So what 

is profiling of a program?  

 

Essentially there are profiling software’s through which you can monitor the execution that 

means it will simply monitor some hardware counters present with your architecture through 

which you can actually times stamp the execution of the program. And the typical way to do that 

is also a I mean I can use a different profiler for profiling the execution of my program or in 

modern programming languages itself they provide with lot of profiling primitives. 

 

So I do not need a separate profiler but just I can gather the times the execution time instants of 

difference segments of program and which will essentially make use of the hardware 

performance counters present in the architecture. So this programming primitives will actually 

tell me when some part of the program actually started and when some part of the program 

actually ended and by just measuring the difference and all that I can simply point out what is the 

exact execution time for that segment of the code for that architecture. 

 



Now of course we can see that this is an important scenario because finally we want efficient 

code to be deliver and efficiency of the code is a function of lot of things in terms of what is the 

memory architecture design of the system how many threads are executing what is the global 

memory transaction width and all the parameters were discussed earlier. So let us first figure out 

how a CUDA program can be profiled using programing primitives. 

(Refer Slide Time: 02:53) 

 

So in CUDA the event API provides you a with the profiling primitives and there are several 

types of CUDA events they are available under this type CUDA event underscore t. Now events 

can be created using a function CUDA event create and created events can be destroyed from its 

(()) (03:22) I can just destroy the event using the other function CUDA event destroy of this 

event variables can be used for recording timestamps using other primitive known as CUDA 

event record. 

 

Now of course the difference between this recorded times I need to gather for that again there is 

a API function which is called CUDA event elapsed time.  

(Refer Slide Time: 03:47) 



 

So we will just see some example program where this things can be put into good use. So 

consider the offset access example program that we looked into earlier so just to remember what 

it really was. 

(Refer Slide Time: 04:02) 

 

Let me just walk back to that earlier program on offset access this was our program we are trying 

to run this small piece of code with an offset parameter is. So all we want to do is I want to check 

what is the execution time of this kernel on some specific GPU and from our knowledge we have 

understood that if I keep on changing the value of this definitely the performance is going to 

change I mean depending on whether I am doing offset access there should be some pattern of 

change in the performance. 
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Whether i can doing strided access which is the other variant of the program so this is strided 

access there would be some other kind of impact on performance we want to see that how such 

things can really be measured. So as we have discussed this CUDA event API is providing me 

with this functions CUDA event create destroy and event record and finally I can measure the 

elapse time using the CUDA even lapse time function. 

 

So let us now have a look into sample program here so the first thing we are doing is where 

defining 2 variables whose type is CUDA event t the variables are start event and stop event and 

I am going to use them to record timings at 2 different instances of course the start and end time. 

So here we are writing a small driver program for the host side so essentially for loop through 

which the thing that I do is in the loop is going to run for these many times in every iteration of 

the loop what am I really doing is I am putting in the CUDA event record. 

 

So what is that if you look into our earlier instances that this CUDA even record function can be 

called to make one of the CUDA event types variables to start recording the timestamp right that 

is all we have done. So we have define this CUDA event type variables and using the CUDA 

event record primitive I am starting to the execution time from this time point. Immediately after 

this starting point for recording I am launching the kernel offset access with the parameter N. 

 



I mean so essentially I am launching N number of threads and it is been divided into I mean N / 

block size number of blocks then each block is containing block size number of threads. So the 

offset code is being lunched and it is being passed with this parameter da and i now if you look 

into the earlier code of offset access. So this second parameter essentially offset value yeah so 

this is offset access code and this is offset value.  

 

So in this function I am going to launch this kernel for each multiple number of times inside the 

loop in every iteration I am changing the offset values. So essentially I am trying to launch this 

function multiple times each time with a different offset immediately after the kernel execution 

finishes and the GPU is notifying the host that it has finished I have this CUDA event record 

with the stop event.  

 

So this function CUDA event record will start recording the timing with the stop event that 

means essentially from this time I am measuring that when this counter is providing me the time 

point for when the kernel is going to finish right. And then I would need a CUDA event 

synchronize for the stop event because essentially this is all asyncrhonize calls and finally I need 

to synchronize this point.  

 

So essentially using the start even monitor I have stared the recording of time at this point using 

the stop event monitor that is the CUDA event I have started recording the time from this point. 

So essentially from this two so if I provide this 2 different monitors to the other call CUDA event 

elapse time now of course I can consider their doing monitoring from starting from 2 different 

points they are doing the time event recording from this 2 points. 

 

This function is provided with this 2 event monitors which have been recording all the events 

starting from this 2 time points. This function will actually go through them whatever is there in 

their statistics because they are doing a recording of events that have been going on from 

different start times so this function will take care of those differences in start times and record 

that difference in the other first in the first augment variable right. 

 

So I hope the point is clear I can use this data structure to monitor several kind of a architecture 

phenomena’s. But in this case I am only interested in the difference in the start time of this 

recorders that specific information can be provided to me by using this function which is doing 



the work of actually looking into the recoding events and they have corresponding start times for 

these two monitors and providing me just with whatever I am interested in which is the total 

elapse time between the kernel launch and the kernels execution finish.  

(Refer Slide Time: 09:42) 

 
Now the similar thing I can also do for a strided access so when I do I will just change code from 

offset access to strided access. So one thing you have to take care that when i am talking about 

strided access this function call should also change to strided I mean so that is some error in our 

part. As you can see for strided access this is our kernel with is being the stride which is there. 

(Refer Slide Time: 10:52) 

 



So I can do a similar thing for strided access so I just need to change this name so then as you 

can see that using this 2 programs we are able to figure out how the total execution time of the 

kernel changes with the change of the offset parameter and with the change of the stride 

parameter. If we plot this thing so here we have a nice plot so essentially we are changing the S 

parameter and we are trying to figure out that okay what is the total memory bandwidth 

consumed by the system essentially the elapsed time of the kernel. 

 

When I am changing the stride of the kernel or I am changing the offset we have got this 2 

curves. Just take a minute to look minutely into these curves and figure out why they behave like 

the way they have been plotted. So let us first figure out what happens in the offset curve for that 

let us first go back to the code offset access. So this is how it is right so considering an offset of 1 

you are getting first when you do not have any offset for every execution of the kernel we have 1 

global memory read followed by 1 right. 

 

Consider an offset value of one so now you have 2 global memory reads and 2 global memory 

write what happens with the offset value of 2. So with offset value of 2 you will have the data 

points A2 upto the data points in A9 and then you will have a data points from A10 upto the data 

points upto A17 then data points from A18 upto the data points A25 right. This is how things 

will go on so essentially whether my offset value is 1 or 2 in both cases the global memory reads 

will require 2 transactions followed my global memory writes requiring 2 transactions with 

offset value 3. 

 

Again I would have the same thing so with offset value 3 I am accessing let us say from A11 

upto A18 but again what is the number of transactions 2 global memory transactions for read and 

2 global memory transactions for write. So in this way as you can see that with the increase of S 

from 0 to 1 I have a band width reduction but after that things remains same with offset 2, 3, 4 

things remains same. 

 

But what happens when the offset value is same as the warp with when s is 8 then what will 

happen is for warp 0 you instead of accessing from A0 to A7 you would be accessing A8 to A15 

right. So again everything is nicely coalesced so you are back to global memory transaction 1 for 

read and 1 global memory transaction for write. So essentially with respect to offset what is the 



situation when you have no offset for this program you have the best performance whenever you 

have some offset your performance decreases but it will decreases to the point which will remain 

constant for further increase in offset. 

 

Until the point where the offset is aligned with the warp with so that again you have the nice 

coalesced global memory transactions and that will again increase the bandwidth. So now with 

this idea if we go back and see that the total performance reduces first but that just for the first 

value from S0 to S1 and then this is all specific to that program it remains the same. Then again 

when it will get access it will ahh get byte line so here we are doing all our runs on (()) (15:23) 

GPU. 

 

And of course as we know the standard warp is 32 size so immediately at 32 things will be 

getting byte aligned nicely. The global memory is again nicely coalesced as the offset 0 cased so 

I have a reduction but then the reduction does not change I am just doubled up the usage I mean 

for all the threads for that specific program line then again the performance is back to what it was 

40 offset right. 

 

But that is not such case for strided right let us go back to strided code once again so as you can 

see when you are running the strided code when your stride is 0 so there is no stride so you have 

again for every instance of this operation 1 global read and 1 global memory write what happens 

with stride. So this is the stride which is changing from 1 to 2 now the number of global memory 

reads and writes have doubled up it is stride 4 the number of global memory reads and writes 

have further doubled up with respect to s = 4. 

 

So if I keep on increasing the stride factor the global memory transaction the number of 

transaction is doubling up right. So this would actually lead to drastic reduction in the memory 

bandwidth provided by the (()) (17:04) to this kernel. So which will lead to huge performance 

loss and if I look at the effective memory bandwidth that I am getting it is reducing drastically so 

the more I increase the stride the memory accesses are getting even more scattered. 

 

So there would be at some point I will loss all kinds of coalescing and in a worst case I will have 

for all thread id’s inside the warp I am doing separate global memory transactions. And that 

would be the worst case so I hope that is understood because nothing can be worse than that I am 



executing a warp. The warp as 32 threads each of the thread are requesting locations in the 

memory which are far apart and they are so much apart that in they cannot be brought in a single 

transaction.  

 

So that is the worst case right I mean so after that if I go on increasing the stride it really does not 

matter because essentially then by that time when for each access I am doing a separate volume 

transaction that would mean for every warp every instance of execution of the warp for some 

load or store instruction I am going to do 32 separate global memory transaction. So that is the 

worst case performance and that would give me the saturation point in this curve the lower 

saturation point in this curve right.  

(Refer Slide Time: 18:28) 

 

Now of course I can use I mean better arrangements of data points for whatever computation I 

am doing to reduce the number of global memory access I need to do in such pathological cases. 

So overall the recommendation is that whenever you are writing your program you need to make 

good use of your memory segments you have to understand the GPU’s memory hierarchy and 

accordingly you should write the code so that the access patterns are nice with respect to 

coalescing. 

 

I mean this is where the role of shared memory it coming because as we all that we have 

discussed earlier many times that inside each SM you have a portion of the memory which can 

be configured as shared memory or L1 cache if you are team your algorithm and write the code 



in such a way that you are doing less number of global memory accesses and by doing some 

smart usage of shared memory that can increase the performance of your code drastically. 

 

So although the I mean in general the property of applications is that they typically required 

different threads to access the same data over and over again. So that is our we know that our 

principle of locality or data use I have a principle of locality which is special as well as temporal. 

So different threads may need access to the same data or threads may need access to data points 

which are located in neighboring regions of the memory. 

 

So the primary things is since different threads would need access to the same data if I keep the 

data in the memory at some point some other thread will require the data and also if I bring in 

chunks which is actually done by I mean the wide transactions that we always do the basic 

philosophy is that whenever we are bringing in the data to the memory and you are bringing data 

in chucks I mean it may so happen that in future with a high probability you would be actually 

reading the nearby memory elements which are already available to you in the cache. 

 

So the shared memory can be configured as partly as cache and shared memory and the good 

thing about the shared memory is all the threads inside the blocks have a consistent view to the 

memory. So in many cases based on this idea that different threads can actually access to the 

same data over and over again at different time points maybe I can reduce the global memory 

accesses by avoiding the multiple load and store from the global memory. 

 

But rather I put the data in the shared memory and keep it there for collaborative access by other 

threads at different points of time. So I make one thread responsible for bringing the data and 

putting into the shared memory using a shared data type and then that data points can be used by 

some other data point or by some other thread by other threads at different points of their 

computation.  

 

Now if this can be done then as we can understand that see every thread whenever it is doing a 

memory reference if it can get in from the shared memory then there is a order of magnitude 

reduction in the access time with respect to the global memory access and that is quite useful as 

an optimization this is one of the primary motivations are keeping a shared memory segment in 

the GPU. 



 

It allows threads inside the block to collaborate among each other the data elements brought in 

by threads in the block can be used by other threads in the block at different points of execution 

by accessing them from the shared memory if they are actually made to be resident in the shared 

memory by the programmer. Now this is something important the hardware does not even decide 

what should be or should not be in a shared memory the hardware decides this for the cache by 

using standard cache principles. 

 

I mean using the caches read and write policies right but for the shared memory access it is 

programmer who has to be decide by giving suitable data types that which data point should be 

resident in a shared memory and which data points should not be resident in the shared memory.  

(Refer Slide Time: 22:51) 

 

Now further deeper into the shared memory so how is the shared memory structure this is 

something we have discussed again is the small recap. So each SM typically have 64 kilobytes of 

on chip memory which can be partitioned between the L1 cache and the shared memory now the 

setting is typically like this that you have 48 kilobyte out of that total 64 configured as shared 

memory and rest 16 kilobyte configured is L1 cache. 

 

But it can also be the reverse by doing suitable programing setting you can make it like 16 KB 

shared and 48KB L1 cache. As I told earlier that if it is L1 cache then it is managed by the 

hardware just like the cache memory is managed but if it is a the shared memory if it is defined 



as the shared memory then the programmer has to manage it through suitable type definitions for 

the variables in the code. 

 

Now this can be configured during the run time API I mean which part of I mean that is given 

memory block which is on chip in the SM whether it should be a shared memory or how much of 

its should be shared memory and how much of it is should be L1 cache essentially it is going to 

be 2 options that can be actually can be configured using the CUDA API. Now suppose you want 

to configure it permanently from the host for all the kernels so the host can technically launch 

multiple kernels one after another asynchronously. 

 

But if I want a specific setting of shared memory and L1 cache available for all the kernels I can 

do that using this function CUDA device set cache I config. So this is the function which will 

take of doing the configuration of the shared memory I mean you can just look into the manuals 

online for NVIDIA and figure out what are the parameters for this or if I can do it in a part kernel 

basis that means I have a host code for 1 kernel I can configure the shared memory and the L1 

cache in the one way and then for the next kernel I can configure in a different way. 

 

Of course it depends on what is the property of the kernel how many threads are getting launched 

how the threads are being arranged whether it is actually useful to have more shared memory or 

whether it is useful to have more amount of L1 cache it depends on the programmers perspective 

he has to figure out whether having more shared memory actually helps that specific kernel then 

you would actually like to use this function to configure that memory segment with more number 

of shared more amount of shared memory. 

 

Otherwise depending on if you want fast access to decrease the latency and you do not have 

really control over what I mean what really would be used along the variables by which thread 

you can actually have more amount of cache. Typically the principle I mean just to before 

concluding here I will also like to put in one important point which I have seen earlier that GPU 

is typically have less amount of L1 cache with respect to CPU’s. The primary reason is that since 

I am going first of all I have the shared memory that is one segment that I have so I can afford to 

have some L1 cache. 

 



But the other reason is that in this case the smaller L1 cache I am trying to hide the latency of L1 

cache is by using more threads. So when I compare computing and GPU computing in CPU 

computing although I have multi-core multi threaded CPU course in a CPU the number of 

threads executing parallely in the CPU are much less with respect to GPU. So objective is there 

is to execute the threads fast enough one important impediment in terms of executing a thread 

faster enough this memory operation. 

 

So I have good motivation for using large caches so that there is a high probability I can find 

whatever data is required in the L1 cache and that would reduce the memory access penalty and 

that will give you better performance. When I am using GPU essentially what I am doing is that 

using more I am actually using lot of threads in parallel right I am launching more number of 

threads in parallel. 

 

So I have really do not care if some of the threads are suffering due to non-availability of data in 

the L1 cache because technically I have too many other threads to execute I have many warp 

waiting I have launched more number of warps then I have actually available physical space. So 

I can just stole that work and execute some other work whenever this work is stalked due to 

some high latency operation.  

 

So this is how things are managed they are at different philosophies since in this case I have 

more number of threads to manage if some threads are waiting due to non-availability of data 

that is fine with me. So in this case I can affords to have smaller amount of L1 cache. So with 

this we like to end this lecture and may in the next lecture we will have to see a good program 

example through which we show how the usage of shared memory can be a nice optimization 

with respect to performance thank you. 


