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Review of Basic COA w.r.t. Performance (contd.) 

 

Hi, so we have been discussing about the different stages, presenting a basic RISC pipeline. Why 

pipelining really helps? And when I have a pipeline implementation. Although each of the 

instructions are taking multiple cycles to complete. Based on the cycle being defined with 

respect to each of the pipeline stages, but by looking at the end of the pipeline, it will seem that 

in every cycle have one instruction completing. 

 

That means for each, each instruction the execution latency is one cycle right? 
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Now, as we also discussed that, this is an ideal scenario where and it is also being getting assume 

that the instruction, when it's moving from one stage of the pipeline to the succeeding stage is the 

movement is seamless there is no issue of delay or anything, but that really doesn't happen. And 

these are the issues known as pipeline hazards.  
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So let us look at a few possible, such hazards. And in a practical pipeline and why such hazards 

actually happened. Such hazards can be classified into several types. One of them is structural 

hazard. So let us consider a sequence of four load instructions in MIPS we have them as Lw 

load- word instructions. So that means let us say I am loading data from memory for consecutive 

loads. So when the first instruction features data from memory. That means, it is in which stage 

of the execution.  
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Going back, the first instruction is fetching data from memory. In the fourth stage of its 

execution. That means the second instruction is in EX stage, third instruction is an ID stage forth 



instruction is in instruction fetch stage. So that would mean, when the first instruction is fetching 

data from memory. The fourth instruction itself is to be fetch from memory. 

 

Considering memory element, where I do not have the facility of parallel reads, even from 

different locations. This is a situation where the hardware does not have support in terms of 

resources, because both the instruction, and the data may be loaded in the same memory, 

element. And they cannot be read together. So this is what we call a structural hazard. It's a 

hazard, that means the pipeline needs to stall.  

 

Before fetching the for the fourth instruction, and it needs to complete that data read for the first 

instruction in its memory stage. And the reason for the stall is lack of resources, because I have 

only one memory element as a resource, and I am assuming that although the data is located at 

different locations in the memory there's no memory is not a multi port supported. 
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Consider another example of another kind of hazard, there's a data hazard.So what happens in a 

data hazard. Let us have this example of two instructions, instruction for subtraction. So, I have 

having the different registers enumerated as 123, and the instruction encoding is such that here 

we are representing the registers by $1 $2 $3 like a standard for MIPS instructions. So, this is a 

substraction instruction.  

 



The idea is that you want to subtract the content of 3rd register from the content the 1st register 

and store the result in register 2 this instruction is followed by and operation, where the content 

of register, 2 and 5 will be Anded. And the result is to be stored in this register 12. Now, this is 

our data, called a data hazard, because we have what we call popularly as a read after write 

dependency, let us look into it in, with more attention now. 

 

So let us consider that this sub instruction has entered the pipeline, that means it is in the IF stage 

of the pipeline in some i+1-th clock cycle. So, if it's in the IF stage in the i+1th is closed cycle, 

then it moves to the decode stage  i+12-th clock cycle, it moves to the execute stage in the  i+3-th 

clock cycle, and that would mean. After the execution of the instruction. The content of this 

registered 2 is getting updated in the i +5-th clock cycle, is not it. 

 

Because  i+1 instruction fetch, i+2 instruction decode i+3 instruction execute, substraction 

instruction executed. Then i+4 is a memory stage, and then I have right back happening in the 

i+5-th cycle. And that is when $2 is getting updated. But what is the situation with the And 

instruction. So when the sub instruction is in its i+5-th cycle. The end instruction in an ideal 

scenario will just be following it right? 

 

That means, in the i +4-th cycle sub was in the memory stage. And in the same i+4-th cycle, And 

is in the execute stage. That means, And demands a value, a proper value in the registered 2 in 

i+4-th cycle. But when is registered to getting updated by sub is getting updated in the i +5-th 

cycle, which means if sub and And are executing in the pipeline. One after another, and 

following sub exactly with the deeper with the, with no intermediate lag. 

 

Among them in terms of execution stages. Then, And requires an updated value in i+4-th cycle, 

and the value is not ready, it is supposed to get ready in the i+5-th cycle. So, that is why you start 

hazard, right, because in that case, I should not be able to execute, and without any delay, getting 

inserted in the pipeline. Unless I adding some extra hardware support. What can be the solution 

in this case, the solution is.  

 



Observe the scenario that although the instruction sub updates the content of register 2 in the i+5-

th cycle. When does it get computed. It gets computed in the execute stage for instruction self 

which is the i+3-rd cycle right? So, the value is actually ready, is just not outdated. So what if we 

have some extra hardware support such that, whenever the value is ready. It can immediately be 

forwarded wherever it is required for execution.  

 

Without the value getting transmitted to the register file, and then getting used from the register 

fight. So these are called forwarding units, which may be present inside a pipeline for resolving 

these kinds of dependencies. But then again there is the issue that hardware. There's the CPU 

data path should have support in terms of detecting these kind of hazards that means while 

executing these instructions sequence.  

 

If I am using a CPU data path the simplistic one I showed earlier, it will not be able to do this 

right? The hardware should be able to look into this instruction sequence and identify that this 

instruction sequence has a read after write dependency. So this can be modeled by a formal 

condition. And that condition needs to be checked by the hardware. And when the chip details 

his dependency.  

 

Accordingly, the forwarding units should be activated. As we got to understand. These are the 

ways in which data hazards can be detected and suitably handled inside the pipeline. 
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Some example of other kinds of hazards, for example control hazards. So what's that?  Take the 

execution example of a branch decision. We have branch instructions, and they need to be 

supported by any processor Why? Because, think of the situation that you have  written a 

problem in the C language, definitely there are changes in execution flows, which you model by 

writing code using IF ELSE blocks. 

 

Now, those will be translated to branch conditions or branch instructions. When it gets translated 

to machine code, right? So, definitely, any CPU has to support branches structures. So, if we take 

the example of this branch instruction branch if equal $1, $2 of set right?  So, in case the content 

of the registers is found to be equal, then the branch has to be taken branch is equal, right?  So, 

this condition of branching has to be evaluated.  

 

So when this branch instruction is getting executed where will this condition be evaluated, it will 

be evaluated in the execute unit right? So the result of this branch conditions, evaluation is 

inferred only when the instruction is in the MEM stage right? So, up to this point, what shall be 

going on for the instructions, after this branch instruction because as we remember, our standard 

pipelining approach has been you execute one instruction. 

 

In every cycle you provide the pipeline with one instruction in every cycle. Following that 

philosophy. When the branch instruction goes from fetch to decode that means when the 



meaning of branch is getting decoded the instruction fetch has to happen. IF stage should be 

fetching the next instruction. When the branch condition is getting evaluated. IF stage should be 

fetching another instruction. 

 

And when the branch conditions meaning has been inferred and it's available in the MEM stage. 

The IF stage should be fetching MLF the third instruction right? But then only after the branch 

conditions result the branch decision has been inferred it is known whether to follow the current 

sequence of instructions. Or whether to abort it and move the PC content to some updated 

address and accordingly fetch instructions from the new branch of execution.  

 

Now, that is why we call it a hazard why? Because just after fetching the instruction is really not 

alone right? Now what can be an obvious solution in this case that you execute the branch. When 

the decision is evaluated as true and flush, intermediate instructions from the pipeline. That 

means you, you simply keep on feeding the pipeline with instructions right. However, when the 

decision is found to be true that means the branch has to be taken.  

 

That means whatever further instructions you have sent into the pipeline, they, their execution 

doesn't have any role. Then you flush the pipeline, and then you move to the new address, and 

then start executing instructions from that address the branch address. But is that a good way to 

go about handling branch, maybe not why? Because then I am always thinking that the branch 

decision.  

 

I mean, will I mean there is a few there's in a statistical specificity speaking there's a 50-50 

chance, and I am not considering facts like for what kind of problem we are talking about. And 

all that, I am not modeling the branch decision, and just thinking is fair enough to keep on 

executing instructions one after another. And only when the decision is known, then I flush the 

pipeline and go to the branch address. 

 

That is why there are sophisticated statistical schemes implemented which is in hardware in 

modern CPUs. So they have this specific kind of hardware called branch predictors. So branch 

predictor is a lightweight hardware, which could contain something like a branch history 



table. That means, what were the branch decisions in a few of the earlier branches. And based on 

not, it will try to predict whether to take or not a current branch. 

 

So then, it's not as nice as the previous approach. Its banking on statistics of previous branch 

history and trying to take an informed decision based on that. However, again if it's found that 

when the branch condition is evaluated is something different from whatever was predicted, then 

the pipeline flushing operation is definitely required. 
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So that is all about very brief overview of pipelining, and how the pipelining deviates in several 

of the known ideas. Some of those scenarios can be handled. We feel that this is small but 

necessary overview, which will be helpful in going further into the GPU part but before 

that. There is something we need to discuss about how memory is organized, in a standard CPU. 
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So, the instructions that the CPU will be crunching. They are fetch from a primary memory or 

main memory that is known to us, more like a RAM. And then this primary memory will be 

connected to a secondary memory or disk drive in between the CPU and the primary memory. 

We have something called a cache memory. So these are the three primary levels of memory, 

which defines the storage. 

 

From which instructions and data are fetched and executed by the CPU as and when required. 

Now, the memory segment which is near to the CPU is the faster cache memory is not a discrete 

thing. It's something which is on chip with the CPU. 
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Now, why really is cache memory used, the specific reason between them. Manners from the 

principle of locality, but is this principle of locality there can be kinds of localities temporal 

locality as well as special locality. So what is temporal locality. If a program references an item, 

let us say a variable or another location. Then, there is a high chance that that item will be 

referenced again soon by the program.  

 

This is temporal locality locality with respect to time. Similarly, we have the concept of special 

locality. Which would mean that if an item is reference, let us say an array content, a1, items 

which are located at nearby addresses in the memory are likely to be referred as soon. So if a 

program fee refers. That means loads the content of an array a, let us say a1 is highly likely the 

content of a2, a3.  

 

Those will also be referenced very near in very near future. So this notion of spatial locality and 

they hold true for most of our programs. Based on that computer memory gets hierarchically 

organized as we told this go back to the picture. 
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The memory element line nearest to the CPU is going to be the fastest. The one that is going to 

be further down on the right hand side will be slower. So cache memory will be some, some kind 

of technology which is faster with respect to primary or main memory, and the secondary 



memory would be slower with respect to this primary memory. But also, as we go right hand 

side, the speed decreases was a size increases the fastest memory element. 

 

To be more specific would be the CPU registers. Because they are sitting really near to the 

arithmetic logic units remaining execution units. So in that way the register file provides the 

fastest access to the data, you just load from the register file to the ALU, and do some 

computation. The cache memory uses the SRAM or static random access memory technology. 

So SRAM technology is fast, but costly also.  

 

The main memory uses comparatively slower DRAM technology, which is less costly per bit 

than as well. That is why I can have a big main memory, but I cannot have a big cache memory 

is fast, but costly. The main memory is low, but I can have a much bigger memory.  
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Now the question is, how really do we decide that okay, I am bringing in data from main 

memory location, I am going to load it in the cache memory, and then I will load it in the 

corresponding register, do some computation. And all that, but where really should I load the 

data in the cache memory? That gives rise to the problem of what we call us cache mapping. So 

what's cache mapping is basically a set of rules that will tell you that okay.  

 



If you bring data from some memory location, mi, what should be the location in the cache, 

where that data has to be stored. Now of course, there can be different policies or different 

functions which dictate the mapping. We will discuss the popular ones, and their relative 

advantages and disadvantages. So, let us start with one of the strategies. So, there can be a direct 

map cache mapping.  

 

So as we discussed the the cache is a much smaller memory segment with respect to the main 

memory. So here in this picture. We have the main memory, these kind of again representative 

from the well known book on Harrison Patterson. So this is the main memory, we are trying to 

show the locations of the main memory. And we have a cache which is a much smaller memory, 

the addresses in the cache are kind of marked here as consecutive addresses.  

 

Starting from 000 to 111 every location in this cache is we are calling it as a cache of block. So 

what's the block? A block is defined as a minimum amount of information that can be either 

present or not present. Now, what does this really mean? Earlier we have talked about the 

concept of memory work right. A word means, the amount of data that may be stored together in 

a register or the amount of data that can be passed on the CPUs bus right? 

 

For example, if I am talking about a 32 bit CPU that means the memory word length is 32 the 

register file is containing registers of 32 bit size. Memory becomes byte addressable that is why 

when we increment the program counter I do a PC to PC+4. I increment by 4 bytes, I go to the 

next memory world, which is the next consecutive 32 bits in the memory. Now when we talk 

about cache is not really the case that when I read data from memory.  

 

I will read 1 memory word and put 1 memory word in the cache, I may read more than that, I 

may read, let us say 4 consecutive memory words. And put them in the cache. So this is what is 

defined as the cache block size. So then I would start saying that okay, this is the minimum 

amount of information that I would read from the memory put in the cache. 

 

Or I will, I will update that cache location with some other locational data from the memory 

right? So then what is the addressing scheme of the cache. So the address of a cache block is 



given by, suppose I am trying to load data from the memory. I define a memory blocks address. 

So that is from where I am starting to load data. Let us say I am loading four consecutive cache 

memory words, this the block size is four.  

 

So the address of the memory block modulo the number of cache blocks. So just as an example 

here in this picture, how many cache blocks are there, so I start from 000 to 111 right, so I have 

12345678, 8 cache blocks. That means, from every memory location, you do modulo 8 

operation, you take the address of every memory any local memory location, you do a modulo 8 

operation.  

 

Whatever you get is the location in the cache, where the data from this memory block will get 

loaded, so that is the idea of a direct mapping for every block in memory. You have a 

corresponding unique mapping to some location of the cache, some unique block in the cache. 
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Now, coming to this idea of cache blocks, how to decide what should be the size of a cache 

block. As we say that it doesn't mean, it may not make sense that you load only one word from 

the memory, because you may have a wider access to the memory. So, you may load multiple 

constituting words and that divides the cache block size of the memory block size. Now then the 

question is, how large should be the block.  

 



And what is the impact of the block size? If I have large blocks in the cache. That means 

whenever I read data from the memory to the cache. I read more amount of consecutive data 

more amount of consecutive memory words and store it in a cache block. That is what I mean by 

a large block size. Then we have lower misread due to special locality. Why is that?  Because, as 

we said the principle of special locality sets. Let us go back. 
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If an item is referenced items that nearby addresses will be referenced soon. Right. So then, in 

case I have loaded a specific data element from memory. The block size is large. There is a good 

chance that many of the consecutive memory locations, which are getting loaded. Since the block 

size is large, I have loaded many search consecutive locations. And some of them would get 

reference soon. And they are already in the cache. 

 

So, I will have a lower miss rate due to this special locality. But then what is the word. The word 

is since I am loading data in large blocks am reading a lot of data together. So, if there is a miss 

the miss penalty is large, in case of a mis. I have to do a memory read and memory read, it will 

take a lot of time. However, I cannot keep on increasing the block size, because then at some 

point of time, the mis read will not keep on going. 

 



I mean, I mean, I will not it I mean, it will not be the case that the mis read is low, but I will have 

the situation that the mis read goes up. So with very large block size. We have two small number 

of blocks, and eventually the miss rate goes up, sorry, here. maybe we should do a correction. 

Yeah. So that is it. This should be.Now, how are things taken care of, when there is a cache miss. 

So of course, in case there is a cache miss that means of value has been referenced by the CPU.  

 

The first place to search for that memory address should be in the cache is found that okay 

content of that address is not loaded. So then the location of the PC has to be updated by current 

PC -4. Why because they instruct by the time this is in getting done, the instruction count has 

already gone up.So that is why you do a current PC -4, and you send that value to the memory 

right? 

  

So that is how you handle a cache miss the sequel you send the PC value, the program counter 

value to the memory, and you do a read access from the main memory, and after doing the read 

access using the corresponding mapping scheme. You find out what is the cache block location, 

and, accordingly you update the cache.  
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So an important issue, apart from deciding the mapping of data to the cash is how really the 

cache should handle variable updates. That is what should be the policy based on which cache 

data should be updated back to the memory. Now why is this important, because you bring data 



from the main memory to the cache, you load the data to the registers. You do some operation 

you update the register content, which now need to be  return back to the cache.  

 

And further back to corresponding memory location. So when do we update the memory 

location, after updating the cache. Now one simple policy can be write-through, that means, 

always write the data into both the memory and the cache, so whenever I update our cache 

location. I also update the corresponding location in the main memory. Now, is it good. Not 

really, because it's the conservative policy. 

 

Because then every time I do a right on the cache. It's accompanied by a right on the main 

memory it's going to slow things down. Alternatively, you have a separate write buffer, so that in 

the write buffer you sequence pending memory updates. So by default you have update cache. 

And in the right before you sequence these pending memory updates for the main memory, and 

when the buffer is full.  

 

Then you carry on the updates, or should be the buffer size can be decided by the memory speed, 

right? Because if the memory as a high latency The buffer needs to be big to hide the latency. An 

alternate buffer policy will be write-back. That means, by default, whenever a program is 

updating variables you update in the cache. Now you update in the main memory. Only when 

that specific cash block is replaced.  

 

Why is this good? Is good because whenever the variable will be referred in the effort in the 

future. You will anywhere refer from the cash first, where the variable value is already updated. 

The issue will come only when some other cache load is going to override this data, that means 

this current updated cache block is going to be replaced. Then this update needs to be transmitted 

back to the main memory.  

 

So this is like doing a lazy right. Doing it isn't where it's needed, and the need actually comes 

with the cash blocks gets replaced. This gives definitely better performance because it's not 

conservative, more so in case of frequency rights, because then you  do not write back to the 



memory that often, but the bad thing is, it's more complex to implement the hardware needs to do 

a lot of stuff so it's more complex to implement. 
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Now, with respect to the memory system. How is this issue of reading and writing data from the 

memory, arranged. Now, memory chips are fundamentally designed to read right, more than one 

word in parallel. Why of course you want to hide the latency, cache is fast. The main memory is 

slow. So that is why whenever you transact with the main memory, you need to. You like to 

transact more number of things in parallel.  

 

So that whenever you do an access to the main memory, you bring more things, or you write-

back more things. Now, how can this really be done in the physical hardware, one option is , you 

use a wide bus. That means you are doing parallel access to multiple words in a memory. let us 

say you are accessing multiple words, all of the words in a block in parallel, but then you need 

the bus to be wider. Maybe you have a 32 bit system. 

 

But the bus is not 32 bit in this scheme you require a wider bus. Alternatively, you can keep the 

bus of standard with, which is equal to the memory word length or equivalent to the register size. 

But then, although the bus is of standard width, you connect the bus with multiple memory units 

in parallel. That is the memory bank, the memory chip is not one single chip. There are multiple 

small memory chips together. 



 

And read and write operations can be done in parallel, from all these different memory 

banks. Why is this a good optimization? The reason is, when we talk about memory access, we 

talked about the total time that means accessing the data from the memory, reading or writing, as 

well as transmission through the bus. The bus is fast. The issue is more with the memories read 

and write, which is slow. 

 

That is why it may make sense to keep the bus of standard width and creating banks in the 

memory so that I can read or write in parallel. 
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Now coming back to the cache mapping. We discussed how cache mapping can be done in a 

direct map where there can be alternate schemes, for example, instead of doing a direct map. I 

can do a fully associative mapping of a cache. So what's that?  A fully associative mapping 

would mean any block of data from the main memory can be placed in any location in the cache. 

If you remember in direct map.  

 

We were doing a modulo number of cache blocks operation and deciding what should be the 

location in the cache, where a memory block gets map right? So in that way for every memory 

block there was a unique location of the cache block. Coming to fully associative, we simply say 



that no you can load anything anywhere in terms of blocks. But why is that a bad thing because 

then when you were referencing data from a cache.  

 

You have to search all the cache locations. Because there is no mapping, there is no mapping that 

look at this memory address. If it is at all present in the cache. It should be located exactly in this 

location, it's not so. So you need a large hardware for doing the parallel search. that is why it 

may not be practical. It is practical only for caches with very small number of blocks. If you 

consider a big cash pool is it is a bad scheme.  

 

So, we can optimize in the middle between these two extremities of direct map And fully 

associative, we go for an in the middle approach we decide decide that let us say that mapping 

scheme can be what we call a set associative cache is defined a set of associative cache. We say a 

cache is in with set associative. That means, cash has got a number of sets, and each of them 

consists of n blocks.  

 

So now instead of talking about cache. As a thing, containing a set of cache blocks. We say that 

it's a hierarchical hardware containing things that we call a sets, and each set contains n blocks. 

That means every memory block can get mapped earlier in a direct map scheme, it was mapping 

a memory block to a cache block. I do not do that right now. I map a memory block to our 

caches set by the formula. 

 

The number of the set is the index of the set is, the memory block number modulo number of sets 

in the cache, why do I do that? Because now keep an memory block number. I know in which set 

of the cache, it should be in case it is present at all. And inside that set, I have, n different 

locations to search for instead of searching the full cache. I searched, only a corresponding set. 

So in that way, I have an in the middle approach. 

 

The scheme is not fully associative, I do not have a complex search by hardware. I have to only 

search inside a set. At the same time, we are elevating one of the issues with direct map cache. 

That means, in direct map. If there were multiple memory locations, which were getting mapped 



due to the module operation. The same cache block number one, getting loaded to need to 

replace the other, but now I can have due to this idea of sets and one set containing n blocks. 

 

I can have multiple memory locations mapping into the same set, staying together in the cache. 

So this is the advantage we get by doing the trade off. And in that way. The, there is a related 

question that how do you decide this n the value of this n?  Now it's more of a design question. 

You have to choose a suitable associated to value, based on what is your target design criteria. 

Look at this important things like if you increase the associativity. 

 

It decreases miss rate up to a point. Why is that so? Because if you increase set associativity then 

coming back to the earlier point. I have the possibility of storing more a number of memory 

blocks mapping to the same set together. So, maybe it will reduce the mystery up to a point. But 

what is the disadvantage?  It increases the heat time. Why, because again I have to do some 

amount of search inside the set. So, if the set size goes on becoming big, the heat time increases. 
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Now, another important thing is the replacement policy. So what is that. Now, as we have 

discussed that suppose in a direct map scheme, new block comes. And this block is going getting 

mapped to some cache block position where there is already some data. That means that data has 

to be replaced. So, in this case there is no problem, right, because every memory location, every 

memory block has a unique mapping with a block in the cache.  



 

So whenever it is being referenced. But the corresponding position is filled up, you have to 

replace it with this thing. So there is an issue. But how about fully associative? Then a memory 

block can potentially replace any existing block right? Because anything can go anywhere. So 

then comes the question that how to resolve this that suppose I have loaded, a memory location. 

And then I have to load, another data. 

 

I have to find out whom to evict because there is no rule, any data point, any block from the 

memory can be mapped to any block location in the cache, there is no rule. So how do I resolve 

whom to evict. The same question also comes in case of set associative cache, because now I 

suppose I am trying to load a specific memory block. It can potentially replace any existing 

block inside a matching set. 

 

Because the operation if you remember, was this. If you are given a memory block number you 

identify the corresponding set number. Now inside the set you have n possible blocks to replace. 

Which one to replace the most standard policy that is used is Least Recently Used policy, which 

means the block replaces something which is being unused for the longest time, that means in 

with every cache block.  

 

We have an idea that okay for how long it is lying there without being used. So there is a least 

recently used block right? So you will replace that one. So this is kind of a summary of the 

different  pieces of information. Which is really important with respect to memory system design 

its hierarchy, its access mechanisms. Its mapping schemes and replacement policy, which are 

pretty much used, and we will learn concepts in RISC processor. So with this will complete the 

present lecture. Thank you. 

 

 


