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Hi, So, welcome to our lecture series on GPU architectures and programming. So in the last 

assignment we were discussing about GPU hardware schedulers and definition of a warp. So 

(())(00:37) we will start from that point. 
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So essentially when we map kernels launched set of threads or a GPU hardware. So we have a 

hierarchy of hardware schedulers which will now come into play. So at the high level there will 

be 1 component of a hardware scheduler which will decide which thread block gets mapped to 

which of the SM’s. And at the lower level inside each of the SM’s there would be another 

component scheduler which will decide which of the threads of the map thread blocks will 

constitute what we call as a warp. 

 

So warp will essentially be a collection of such threads which execute in parallel as discussed 

earlier. So this packing of threads from thread blocks to warps is something that will be decided 

by the lower level scheduler 



(Refer Slide Time 01:30) 

 

And if we just re loop into SM so we have this kind of warp scheduler sitting inside the SM and 

there is a high level scheduler which is distributing blocks into SM’s for execution.  
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And so just to summarize again what a warp is it is a collection of 32 threads which will execute 

for using the SIMD instruction sequences and the warps get mapped into the collection of SPs 

for execution. So if I SM has an example 128 SP’s then it can execute 4 warps at any given time. 

Since 1 warp has 32 threads so at any time in parallel the SM we will have 4 warps proceeding 

through its SP’s in parallel.  
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So here we have an example scenario where we are trying to provide situation that ok we have an 

SM where as you can see that we have a collection of SP cores. So here you have in total 16 SP 

cores right. And consider the situation that you have some warps progressing to this SM. So for 

example let us say warp 0 its constituting now this packing of threads into the warps is what is 

going to be done by the scheduler which is sitting inside each of the SM as we discussed that this 

is the second level scheduler in the hierarchy. 

 

The high level scheduler is dispatching thread blocks to each SM and inside this is SM we have 

this kind of scheduler who is actually forming this warps. So this low level SM scheduler is 

actually forming this warps like the form of warp 0 warp 1 so this kind of hiding each warp and 

it is deciding in each warp which are the threading indexes that should be constituting each of the 

warps. 

 

So I have warp 0, warp 1, warp 2, warp 3 and they are containing threads with ID 0 to 31, 32 to 

63, 64 to 95 and so on so fort h and they are executing the instructions that are part of that is that 

and that CUDA kernel under question that instruction sequence. So just to look into this scenario 

on the right-hand side we are trying to say that what is the exact sequence of this warps that are 

executing. Suppose I have an instruction sequence that is instruction 0 followed by instruction 1, 

followed by instruction 2.  

 



So if in this hypothetical system hypothetical lesson I am executing this warp as you can see that 

I have a collection of a this 16 codes and each warp is containing 32 threads right. So assuming 

everybody take a single cycle of execution for each of the instruction on the core there is no 

floating pointer delay due to other kinds of complex operation. Each warp would then complete 

with 2 clock cycles right because there are 32 operations to execute in parallel for the warp while 

I have only 16 cores that are available.  

 

So the warp would technically take 2 clock cycles. So in that way for instruction 0 to be executed 

by all the 4 warps as you can see here I would be I would be consuming. So each warp is 

consuming 2 clock cycles. So for this 4 warps all of them completing instruction 0 I would 

require 8 clock cycles. Similarly I would again require 8 clock cycles for instruction 1 and this 

was the execution precedes here.  

 

So again for warp 0 executing instruction 2 that would start in the 16 clock cycle. This is just an 

example scenario we are trying to give. So we are trying to say that this is how the warps may 

get scheduled here on the core and the number of cycles that the warp would take depends on the 

number of SP’s that are available. And also the kind of instruction that the warp is executing. 
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Now if I have a relook into the picture when I am considering warps belonging to different 

thread blocks. So I am now considering warp 0 from thread block 0 and then warp 1, warp 2, 

warp 3 all from thread block 0 and then again warp 0, warp 1, warp 2, warp 3 all from thread 



block 1 right. So now I have 4 warps. Their 4 of them belong to thread block 0, 4 of them belong 

to thread block 1. 

 

And if we map their execution here on an SM with 16 SP cores that is like earlier I would have 

each of the warps executing in two clock cycles. So I would have for example here instruction 0 

getting executed by all the warps. Warp 0, warp 1, warp 2, warp 3 belonging to thread block 0. 

Then instruction 0 executed by warp 0, warp 1, warp 2, warp 3 belonging to thread block 1. And 

similarly, with instruction 0 completed by all the thread block warps I have instruction 1 again 

getting executed for warps belonging to thread block 0.  

 

Then again I have instruction 1 getting executed for all the warps that are belong to thread block 

1. So in this case of course we are having this assumptions that there is a thread blocks scheduler 

which is using a round robin policy to schedule the thread blocks. Now this is what we have as 

an open domain answer in the academic research papers that people are assuming that the 

NVIDIA thread block scheduler is following this kind of round robin policy.  

 

But of course, it depends on your implementation these are the exact hardware scheduling 

strategy for the thread block schedulers as well as the warp schedulers is not, they are in the open 

domain. And of course, it can also be implementation dependent depending on different scenario 

somebody can implement the GPU hardware in a different way to have a different possible 

scheduling of thread blocks.  

 

From a programmer’s point of view, we will always assume that the warps can proceed at their 

own speeds. And of course, they have to satisfy the instruction sequence requirement that is 

enforced by the thread. 
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So just looking into some more examples for here we have a very simple kernel where we can 

see that the kernel is 2 just look at the 2 line code segment on the left hand side. So we are just 

computing the thread ID and we are then using the thread ID to access some specific location of 

an array and simply adding the value in the location with itself and storing right there back. And 

on the upper part of the figure we show that how the warp will pat the operations.  

 

So in warp 0 I would have the locations a 0 to a 31 getting updated sequence of operations. So 

this is what would get done by warp 0 and then next we would have warp 1, warp 2 and so on so 

forth. And so this is how I am just trying to show how the warps would be packing this addition 

operation spread over the width of the data space. Now if we take a closer look in to the 

corresponding PTX instruction for the actual CUDA code we have on the left-hand side.  

 

So on the right hand side do we have the PTX instruction. So the initial part of the instruction 

they correspond to the thread ID computation part and the second part of the instruction they 

actually corresponds to the editor operation that has been done right. So just take a second and 

have a closer look in to the instruction sequence here. So essentially as you can see that the first 

5 instructions which are highlighted in blue they are responsible for doing the thread id 

calculation here. 

 

And finally in the second highlighted part we are using this value of the thread ID to bring the 

content of the array at that location corresponding to the thread ID into this register here. So 



essentially this is your final thread ID here and then you use the thread ID to load the 

corresponding locational value using this load instruction here in r5. And then you are just 

adding up the content of r5 and storing into r6. And then you do a global store back in to the 

location for the same thread ID right.  
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So if we now have a look into that sequence of instructions that are executing there. So as you 

can see you have an address followed by a load operation followed by another add operation and 

then a store operation. So for this different packing of warps like warp 0, warp 1, warp 2 this 

instruction the corresponding instruction would be dispatched to the SM the different functional 

units of the SM and I mean how really would their execution be ordered.  

 

So of course for this the warp scheduler need the operands for each of the instructions to be 

ready right. So there would be a mapping table from which the warp scheduler gets to know that 

what is the warp ID which is ready to execute so for example these are samples space situation 

we are showing here that warp 0 is ready to execute from this address 42. And the corresponding 

SM instruction that needs to be executed is this add is 64 which is basically the first instruction.  

 

So if we just number the instruction for that part this is the first instruction if you again have a 

loop. The next add is the third instruction and between you have the load and then the store. So 

the original sequence of the instruction is as I have marked in here. And as you can see what we 

are trying to communicate here is a different warps may have be they are ready state for different 



possible instructions depending on what are the operands available for that instruction whether 

they are ready.  

 

And also for that warp whether the preceding instructions have already executed. So here we 

have one possible valid execution sequence for this instruction. So the warp 0 would execute so 

that is your instruction with address 42. So basically this is the warp 0 is executing the first 

instruction corresponding to this sum right. So this is the first instruction corresponding to sum 

operation warp 0 is executing that.  

 

Now this is followed by warp 15 going to execute the fourth instruction corresponding to the 

sum operation. So oh how can this be possible well of course that would mean that warp 15 must 

have already executed the previous instructions corresponding to the sum operation for each part 

of the data space. Now in this example we have warp 15 followed by warp 2. So essentially we 

are saying that somehow warp 15 made progress at a higher speed and then warp 2 executes its 

instruction number 3.  

 

That means by this time warp 2 as executed its first and second instruction and then warp 9 

would be executing its corresponding instruction which is the second instruction in the sequence.  

So the idea is very simple for very warp need to follow the instruction sequence1, 2, 3, 4 as has 

been marked for this is the first instruction, second instruction, third instruction, fourth 

instruction. This is a situation we are trying to show here.  

 

So warp 0 is going to execute first instruction followed by warp 2 executing the third instruction 

is just an example we are trying to say that ok. So when warp 0 is executed the first instruction 

warp 15 is executing the fourth instruction that would mean that the warp 15 has already 

executed instruction number 1, 2 and 3. Now the requirement is every warp needs to execute the 

instruction first, second, third, and fourth in the sequence.  

 

But it is not necessary that warp 0 would execute instruction 1, 2, 3, 4 followed by warp 1 

executing instruction want to support like that. Now there it is necessary that warp 0 execute 

instruction 1 and then warp 2 execute instruction 1 (()) (15:04) like that. They are free to proceed 

depending on as and when the operands are ready. So just like an example we are trying to say 

that it is not only the case that the warps would be schedule following the specific policy it is 



also the situation that the warps required the corresponding operands values to be readily 

available for making some progress right. 
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So just to summarize that how does really warp scheduling take place in the SM. So the warp 

scheduler will issue there ready to go warps one warps instruction per cycle. And it will use an 

operand score boarding to prevent hazards. So this is kind of that table we are trying to show 

here just as an example that what are the warps which are ready to go. Now I mean which ones 

are ready to go they actually are being computed by using a score boarding technique we are not 

getting into too much of detail of that.  

 

But of course you need to understand that just like the pipe line here also I need to prevent 

hazard that means I should not be executing a warp before the operands become readily available 

or I should not issue a warp before the functional units become free right. So these are the 

potential hazard scenario’s which needs to be prevented. For that we will be using the score 

boarding approach.  

 

Now the issue selection is based on round robin I mean there can be specific examples there can 

be a round robin scheduling of warps as an example we discussed earlier. However that need not 

be the only system it can also be based on how old is the warp active for how much time. So it 

depending the age of the warp and of course the warp has to be ready. That means the 

corresponding operands need to be available and functional units need to be available.  



 

So the score boarding determines whether in that way the thread is ready to execute and 

essentially it is a hardware implemented table which tracks different scenario like whether the 

instruction has really been fetched whether the resources required by the instruction are really 

available. That mean whether the functional units are available whether the operands are ready 

and whatever is the register file that is going to be modified by this instruction whether that can 

also be done.  

 

So the score board actually takes care of providing a status that whether executing this 

instruction would be hazard free. If so then it would say that well this instruction is ready to go 

with corresponding to operands and functional units. And then the warp scheduler will use its 

implementation algorithm whether it is round robin or some other technique to decide whether to 

issue the warp warps instruction or not.  

 

So this is how possibly the warp scheduling we executed. Of course some part of it is 

implementation dependent but these are the current techniques that are in actual implementation 

in modern GPUs.  
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Now the other important thing is that why really do we have this kind of warp-based executions 

and why do we really have this kind of a multiple SP so many in the presence of SP’s in very 

high number inside the SM’s. The reason is that you want the GPU’s to tolerate long latency 



operations. So when threads in one warp executes such long latency operation for example a read 

operation from the global memory as we all know that read from the share memory is much 

faster with respective read from the global memory which is very slow.  

 

So whenever a warp would require any read operation from the global memory it has to wait for 

a long amount of time. Now since I have this warp scheduler internally built into the SM. So it 

can actually when this warp is waiting for the operands to available the warp scheduler can 

dispatch and execute many other exit warps until the operands are available for the warp that was 

waiting right. 

 

Also a warp has to wait may have to wait for many other long latency operations like floating 

point operations branches and that. So overall the issue is that if a long latency operation is there 

then the GPU should be able to hide the corresponding penalty then the way to hide the penalty 

is you always keep your functional units engage by using some other warp. That is why the warp 

scheduler has a huge role to play in terms of feeding all the SP’s with as many operations 

possible by dispatching warps.  

 

Whenever some executing warps stalls due to a long latency operation. So after one has to 

remember that all threads that you have which are following the same control flow that means 

following the same sequence of its and same sequence of instructions they are essentially 

executing the same instruction sequence. So it does not really matter which threads execute first 

or which threads inside in another warp executes slow. 

 

As long as they do not have any dependency among each other because they are all doing the 

same instruction sequence computation on different on possibly different data points on the 

memory. So also a common practice in this regard is to launch thread blocks of a size that is 

multiple of the warp size. Now this is something we have also discussed earlier that if we launch 

a thread block with size which is multiple of the warp size then I have all warps completely filled 

up with 32 threads. 

 

Otherwise if I have a thread block size which is not a multiple of warp size then I will have some 

warps which are not really full with 32 threads and that would be that would actually transfer to 

some hardware not getting utilized while execution of that warp. And also there is important 



question like whenever the thread in a warp are executing a long latency operation like a global 

memory read.  

 

The warps can be optimized in a such a way that the threads can be written in such an optimized 

way. That the warp will always access consecutive global memory locations. So that the fetch 

can be done in parallel this is known as global memory coalescing optimization which is 

something we will take up later on.  
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Now the next thing is how to make a good efficient use of thread blocks. So we take a simple 

situation here considered some target system constants. So you have a maximum of 8 blocks and 

1024 threads per SM. And you have a the maximum number of blocks threads allowed inside 

block or the thread block size let it be 512. So you are going to have 1024 threads per SM you 

can have maximum 8 blocks. 

 

What ever you choose as a thread block size and whatever you choose as a number of threads 

that you launch in total we are restricting that 1 SM can handle 1024 threads and 1 SM can 

handle 8 blocks it is just as synthetic scenario we are assuming these just an example here. And 

let us also consider that a thread block size is limited to 512. Now in this situation consider 

different possible input block sizes for some kernel launch parameters.  

 



Consider the input block size as 8 cross 8 and so you have a block per SM as 12. And so and 

then in this case so if your input block size is a 68 cross 8 and you have blocks per SM as 12. 

And then you have threads per block since you are having a this blocks per SM as 12 and input 

block size is 68 cross 8. So you naturally have a straight for block as 64. So in this case our 

observation would be that the execution resources in the SM would be underutilized.  

 

Now the question is why that so? So in this case you are actually using the number of blocks per 

SM is 12 right. While you have threads per block as 64 now the problem would be so since you 

have the 64 blocks 64 threads per block. So when the SM would be executing you have a in total 

a thread block size of 64 and in total you have 12 blocks. So overall what would be your total 

number of threads that you are essentially launching.  

 

So overall you have launched essentially 768 threads right. So ideally I would say that this is I 

mean the SM could have handled more number of threads. So execution resources are practically 

underutilized. Now consider another situation where you have got this a input block size 16 cross 

16 2D definitions. Now you have you are going to launch 4 blocks in the SM and the number of 

threads that you are allowing per block in naturally 16 cross 16 which is 256.  

 

So your total number of threads you are launching is. So that essentially is a number which that 

SM can maximally handle. So in this case you are using the full capacity of the SM right. Now 

consider a third scenario suppose where use you are defining a kernel with a block per block 

parameters 32 cross 32 an you are just launching 1 block. So then as you can see 32 cross 32 is 

also 1024 so essentially you are defining a thread block of size 1024.  

 

Now this example we have taken it violates the definition that I am not going to allow here for 

this specific example more than 512 threads per block. So this exceeds the limit so this is not 

allowed. So these are the typical problems that you can have while mapping a kernel to a GPU 

you have to know it is hardware’s limitations. So as we have discussed earlier that there are such 

specific limitations and you need to know them to define the corresponding different parameters 

spaces and corresponding launch parameters for that count.  

(Refer Slide time 26:35) 



 

Now something about different ways in which a GPU can be queried. So for I can the CUDA 

library provides you several specific constant this kind of constructs using which from your 

program you can actually figure out what is the hardware configuration of the target GPU. For 

example in your program you can use this function called CUDA Get Device Count to give you 

the number of devices in the system.  

 

You can use this function called CUDA Get Device Properties which we again would return 

different possible property values for some spark particular device in the system. Now why is 

this important because as we discussed earlier your programs kernel launch parameters may be 

decided based on this different properties that you get. And also I can have so that would mean 

when I write my CUDA kernel I would have the parameters of the kernel may be certain access 

expressions in the kernel in term of variable which would get initialize based on the different 

CUDA device properties that I can (()) (27:46) through this kind of library function process.  

 

So with this we will conclude this lecture and from the next lecture maybe we will take a deeper 

look into the different querying different ways in which device properties can be required. Thank 

you.  


