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Hi everybody so in the last lecture we have given a summary of how multi-dimensional data can 

be processed by a CUDA programs and how threads inside a thread block can synchronize 

among each other. While discussing that we also talked about I mean of course we have 

discussed this earlier also that in GPU program execution there is specifically for CUDA 

program execution we have this concept of warps.  

 

So basically that would mean which are the threads that are going to execute together in lockstep 

at least from the programmers point of view even not even from even if not from the hardware’s 

point of view. So we will from this lecture we will discuss in more detail with respect to that how 

the GPU essentially is going to schedule the threads in packets of size warps and what are the 

performance issues that can actually occurred if the programmer is not aware of the way the 

program is going to be scheduled.  
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So just to do a summary here so that the topic is warp scheduling and divergence and this is our 

week 5 topic here.  
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And so doing a summary of overall GPU architecture if you remember that the GPU can be 

viewed as an array of a streaming multiprocessors where each SM the streaming multiprocessors 

has a following elements. It has got a large register file that can be partitioned among the threads 

for execution. So it is basically portioned across the SMs and I mean the SPs the scalar 

processors inside the SMs. 

 



The inside the SM apart from having a large register file you also have this several types of 

cache. For example you have a piece of memory segment which can be partition to behave as a 

shared memory and also a part of it to be as an L1 cache referred to our earlier lectures on GPU 

architecture for this. And also inside the SM you have got separate cache memory area for 

storing constant value to be used inside the program. The constant cache and also the texture 

cache.  

 

Also each SM inside it has got the specific piece of hardware which is called the warp scheduler 

which is going to decide which threads are going to execute when inside the SM. The actual 

execution units comprised the scaler processors which contain integer ALU and the floating 

point unit along with I mean as a separate unit not as a part of the scalar processor. You also 

have special function units present inside the SM which are responsible for computing the 

transcendental functions for example trigonometric function. 
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Now just to review the different data types and you use inside your CUDA programs and their 

corresponding scopes that get decided based on the way you in which you declare the variable. 

So as along as your variable is not an array variable is a it is an automatic variable it is the scope 

is a thread. So it is specifically it is going to be stored in the register. It is not an array variable it 

is going to be stored in a register as long as the register is available its scope is part thread and 

the life time of the variable is the execution of the kernel.  

 



So if you have a local variable V which is going to be used by every thread. So I every thread 

will see own copy of this variable and with the corresponding mapping in one of the registers 

right. If you have an array variable for that also the scope is thread every variable will see its 

own version of the array variable if it is if it is declared inside the kernel as an as local array 

variable.  

 

The memory type is local that means it will be stored in the segment of the DRAM which is 

result for the execution of this thread of course since it is part of the DRAM it is a local memory 

in terms of in the parlance of the programmer but physically it is located far away so the access 

is slow again the life time is that of a kernel. If is declared as shared then the place where this 

variable will be mapped physically is the shared memory segments of the SMs. 

 

The visibility will be the block that means all the threads inside a same executing thread block 

will have consistent view of this variable which is defined as a shared variable the life time is 

again the kernel that means the moments the kernel finishes its execution the this variable scope 

is lost right. And then if we declare a variable as a global variable if we declare the variable as a 

global variable then I mean the way you declare is simply have it as a variable type as a device 

type variable without the annotation of shared or something. 

 

So that would actually infer it as a global variable. It will be it will be resident in the global 

memory and then the scope is actually grid. That means the variable is alive across the different I 

mean across the entire execution of the application that is it is alive across multiple kernel 

instances as operated from the host programs site. If the variable type is defined as constant, then 

its location is in the specific constant location constant memory location of the memory 

hierarchy of the GPU.  

 

Again the scope is grid and its lifetime is the application that means it is consistently accessible 

by multiple instances or multiple different kernels. All of them are assumed to be control by the 

same host program. So one application is one host program so one host program can comprise 

multiple kernel launches. So for such scope that is grid the variable has to be a type global or 

constant. Its definition should for constant it should have a constant quiver.  

 



If nothing is there it is infer type is device. Then infer that is a global variable type is device and 

you have the shared connotation then you have this defined as a shared variable. But with shared 

variables as we know that that the scope is the block all the threads inside the thread block will 

have a consistent view. Lifetime would be kernel and also for normal array and non-array type 

variables depending on whether it is array then memory is locals, if it is non array a single 

instance then the memory is register for both of them the scope is thread.  

 

They are every thread has a different copy of them located in the local memory or the local 

memory essential with the private memory corresponding to the thread in the DRAM or the 

corresponding register that the thread has been allocated. And again the lifetime is kernel. So this 

are the different memory types and scopes that we can define for the CUDA device memory site. 

So as you can see that these are all I mean I mean as long as it is a part of the shared or global or 

the constant type memory the scope is specified explicitly with this device connation here fine. 
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So with this progress now the question that comes is how really do thread get mapped to the 

hardware. So this is an example picture that we are trying to give here. So we are trying to say 

that we suppose I have defined threads in a way that I have blocks and each thread block 

contains m number of threads. So we are trying to show a sample mapping here were we are 

trying to show multiple SMs.  

 



So this is SMs 0, this is SM k in between we have with the dots we are trying to represent there 

are lot of other SMs in between. Inside each SM we are trying to give a figure that how the 

register file is logically partitioned for the SP’s that means for the thread to do the computation 

privately some significant some part of the register is block for each thread to do their 

computation store their automatic variables and all that.  

 

And each thread is mapped to each of the SP’s and so if I have a thread block then the threads in 

the block are getting mapped to one specific SP like this. We are just trying to show a possible 

mapping. Now of course the question may come suppose I have more than this m number of 

blocks or let us say I have more blocks then they are SP’s available inside an SM. So then what 

will really happened.  

(Refer Slide Time 09:27) 

 

So before going to those question just we are trying to keep an example we are trying to recall 

one of the example mappings as we discussed. So this is one of the example of 2D mapping here. 

So we are trying to show that we have this many blocks in the 2 dimensional space for each 

block we have again threads which have been which have been mapped into the blocks like this.  
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So this was one of the earlier example we are just again here for example purpose and consider a 

generalize a mapping scenario here. So you have got this 20 threads inside this block and you 

have got total how many blocks you have got in total 18 blocks right. So you have 18 blocks and 

20 threads here. So or maybe we may consider the mapping scenario we have set of grid set of 

blocks and the block dimension let say 5, 4 so that is you have 20 20 threads per block. 

 

Consider that you have a 6 SP’s SM’s in to together and the total number of scalar processors per 

SM is 40. So we are considering a scenario where you have an SM considering containing 40 

SP’s and you have threads thread blocks of size 20. So what does that mean that would mean that 

2 blocks are mapped to 1 SM at a time. Why is that a good thing because your hardware 

resources are completely utilized.  

 

Why is that so? The reason is you have to you have to remember this as a rule of thumb that a 

block cannot be partition while mapping across SM’s. A block cannot map half of the block to 

SM 1 and half of the block to SM 2 that is not allowed. So as long as you have blocks the thread 

blocks size which is like I mean you have so as long as the scenario is like this that you have the 

block dimension and the number of SP’s in the SM is the multiple of the block dimension.  

 

You can block and you can have an integer number of blocks getting mapped inside the SM’s 

without any SP line are utilized so that is the good mapping. So with that example mapping if 

you just instance share the earlier picture this here everything was symbol so we are considering 



M number of threads and this M threads where getting mapped to this I mean N number of 

threads per block and we are considering N blocks inside an SM.  

 

So in this example what is happening is we are having 2 blocks right. So we are having 2 thread 

blocks which are getting mapped to 1 SM here each thread block is containing 20 threads right 

just to recall here we have discussed here there would be 40 SP’s per SM and in total for each 

block there are 20 thread. So that would mean for the 40 SP’s we can logically partitioned them 

across to in sets of 20 and we can map each block to one of the collections of 20 SP’s right. 

 

So I have block 0, 0 mapped to this nice collection of 20 SPs. I have block 0, 1 mapped to this 

nice collection of 20 SP’s like this for SM 0. Overall if I am considering 6 SM’s and then I can 

go on like this and map the other blocks and since I have 6 SM’s and I have got this many blocks 

this many thread blocks to map. So I should be able to map I should be able to keep on mapping 

like this 2 thread blocks per SM.  

 

And in the way I would be having an execution of how many blocks as you can see 2 blocks are 

getting executed per SM. I have got 6 SM’s so overall, I have 12 blocks executing in parallel 

right inside this entire GPU system. Well what about the other blocks? I had 20 of them the 

scheduler is holding them back because they are (()) (13:47) enough CUDA codes available 

execute all of the thread blocks in parallel now which is quite general scenario.  

 

Your kernel dimensions launched parameter dimensions allow you to launch a large number of 

threads. Of course, physically you may not have that many code available across these hierarchy 

of SM’s but that does not matter. The hardware scheduler takes care of mapping this thread 

blocks inside this SM’s in kind of this is an example packing I am showing in in with this kind of 

mappings.  

 

And ones some thread blocks will finish execution some other thread block which actually get 

map into one of the SM’s and this were the execution will continue. So consider this kind of a 

mapping in a resource constant scenario we consider a scenario where the resources of the 

architecture are limited that means say your grid dimensions is like this you have this grid 

dimensions and so you have SP’s per SM earlier that we are consider was 40.  

 



And now you are considering that your grid dimension 6, 2 just like earlier and block dimension 

was 5, 4 just like earlier. But now instead of considering SP’s part SM as 40 let us start 

considering SP per SM is 20 so what happens now. Since you are SP’s per SM is 20 at a time 

inside 1 SM I can execute only 1 thread block. So there will be further civilization for execution 

of thread blocks right.  
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So that would mean in 1 SM I have got only one block executing right. In another SM I have got 

another block executing. So with respect to the earlier example I have got more number of 

blocks waiting to execute because earlier I was executing more number of blocks per SM. So 

earlier I was executing with the 6 SM I was executing 12 blocks in parallel. But now with this 6 

SM I am executing 6 blocks in parallel. 

 

So the number of batches per thread block execution becomes large and its more sequential 

scenario right. So now I would have in this way less number of blocks executing parallel due to 

lack of hardware resources and more number of batching of thread blocks. So this batching of 

thread blocks and decision of which blocks goes to which SM would be differ will actually be 

decided by a global hardware scheduler resident inside the GPU. 
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Now some general examples here like so when we speak of thread blocks SP’s and SM’s the 

maximum allowed thread block size is 1024 in modern architectures it can actually becomes 

2048 it is also the property of the architecture. Now the reason is an SM can store maximum 

1024 thread contexts. So every SM will be able to will as to it has to remember what are the 

threads that are map into it even if the thread is executing or not right. 

 

So that is the context of the thread. So that context needs to be stored and this limitation on the 

overall thread block size actually comes from the hardware requirement with respect to storing 

this maximum number of thread context so this tread context. So of course, the SM can have less 

than 1024 SP’s but it does not matter. As we discussed that I do not really need to execute all the 

threads in the block in parallel. 

 

The constant of 1024 or 2048 for that matter comes from the SM ability to remember the context 

of the thread. It has been mapped a full block or may be multiple blocks. It should be able to 

remember the context of the threads. If the amount of memory available is something finite then 

only I mean this case it is 1024 thread context the amount of memory limited by that. Then only 

that many threads can be part of 1 block. 

 

So although because even with that setting although the SM can have less than 1024 SP’s that 

means all the thread inside the block are not executing in parallel. But the SM can remember the 

context of the thread and actually schedule the threads using a smaller number of SP’s by 



remembering the context of the thread ok it executed up to this point then some other thread then 

other some other thread like that we will see some examples. 

 

If we look at an example of GTX 970 then there are 13 SM’s. So overall it can actually 

remember 13 cross 1024 thread context in parallel and however it does not mean that many SP’s 

are available. It has got only one 128 per SM but it can remember the every SM can stored this 

many the number of thread context in parallel and accordingly it can schedule the execution of 

this maximum 1024 threads per block inside the SM’s by suitably choosing the threads inside the 

blocks and packing them together for execution on the SPs. So there is a there is where the 

scheduler in width which is inside the SM will come into play. 
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So 1 block goes in 1 SM one block cannot be divided across 2 SM or more SM 1 SM can have 

multiple blocks. If can SM store maximum 1024 thread context and block size is 256, we have 4 

blocks per SM. So 1024 is giving you the maximum block size that is allowed and of course you 

are free to actually define a block size that is less than that. But since the SM can store that max 

1024 thread contexts and if you give a blocks size of smaller size let say 256.  

 

Then when you are going to launch your kernel the SM can be mapped with 4 thread blocks. 

Your block size is 256 this is the important. Your block size suppose you have chosen to write a 

program where you have launched a kernel with block size 256. Since the SM can store 

maximum 1024 thread context that means you can remember the context of the this many 



executing threads while executing a sub part of they being parallel as define by the number of 

SPs.  

 

But still since the max is 1024 your block size is smaller value of 256. The SM can be mapped 

with 4 thread blocks 256 times 4 is 1024 and this mapping is decided by the high levels 

scheduler who is distributing the blocks across the SMs. So the number of blocks that will be 

mapped to the SM is defined by the number of threads per block while remembering the total 

number of thread context then the SM can be remember. 
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So this is what the hardware scheduler decides. It decides which thread block will map to a 

collection of SP’s or the or to map SM and inside the SM we have a secondary this hardware 

scheduler which decides that ok this are the thread blocks that has been mapped to this SM. Out 

of this thread blocks which are the physical threads which would be packed together for an 

execution. This binding of physical threads together for a lockstep execution is what we have 

defined earlier as a warp.  

 

So this is the basic unit of execution inside a GPUs SM. So this is done by the hardware 

scheduler blocks sitting inside the SM. So the SM will be assigned a set of thread blocks or 

maybe one thread blocks. Inside the threads blocks you have multiple of threads which of the 

thread will actually execute in parallel in units of the execution that is warp will be decided by 

the GPUs SM hardware scheduler. 
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So this is basically a way we are trying to give the picture. So we have an SM inside the SM you 

have this warp scheduler as a hardware unit is deciding which of the threads are going to be 

dispatched together through the SP’s for execution into execution in lockstep. 
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So just to summarize the warp is the unit of the thread scheduling in the inside the SM’s. Warps 

size is implementation specific typically it is still now 32 threads inside a warp. Now this warp is 

executed in the SIMD fashion that is the warp scheduler launches a warp of threads each warp 

typically executes one instruction across parallel threads. If a SM has 128 SP’s it can execute 4 

warps at any given time. One warp has 32 threads right.  



 

So a question is what is a part of a warp which are the thread id that are the part of the same warp 

that is what decided by the warp scheduler sitting inside the SM. So just to review it here the 

warp scheduler decides which thread to pack together for execution in a warp. These are all 

threads with consecutive thread ids but so the threads in the warp are guaranteed to the execution 

the same SID SIMD distribution instruction together. 

 

It executes one SIMD instruction followed by the next SIMD instruction in lockstep like that. 

Different warps can actually progress to the SM together. Why? Because I have more than 32 

SPs. For example I have let say 128 SP’s. So in parallel 4 warps may execute together. So inside 

a thread block I have lot of threads. This thread are packed into packets of 32 by the warp 

scheduler.  

 

This packets of 32 threads are warp will execute into lockstep together from the programmers 

points of view in terms of a instruction right. But again the warps may progress a different 

speeds. Each warp progress each warp ensures that the threads inside the warp progress at the 

same speed. But I have different multiple warps can actually going here which warp goes in here 

that is decided by the warp scheduler.  

 

So which are the real warps that are executing it depends. That is why when I launch a thread 

block containing that number of threads as we have discussed earlier there is no guarantee that 

all the threads are progressing at the same speed. The threads will be packed into warps as 

decided by the warps scheduler. And it will decide which packet of thread will progress at which 

speed that is why we will require the SIM thread or some kind of some synchronization primitive 

like that to ensure or force synchronization among threads.  

 

So that they actually have a consistent view of data points on which they want to collaborate and 

work together. With that we would like to end this lecture and we will resume from this point 

thank you.  


