
Spatial Informatics

Prof. Soumya K. Ghosh

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 24

Spatial Networks – IV

Hello. So, we will continue our discussion on Spatial Networks one of the as we discuss

is one of the major aspects of Spatial Informatics and one of the widely used in the

spatial informatics application domains, right. So, like we are all used to finding a

shortest path or finding a path between two source and destination and type of things

right.

So, we are already discussing or different aspects of the things. Today we will see some

more aspects of spatial networks, mostly which deals with spatial given a spatial network

data; how to analyze the data and what are the specific building block for this type of

applications and type of things right. So, those is our discuss focus today.

(Refer Slide Time: 01:10)

So, one major aspects of spatial network is query processing and optimization right or

anyway any spatial query, for that matter any database query; the one major aspect is a

query processing and not only processing query optimization of the things. So, as if you

recollect. So, what we mean by optimization, like if I have a query processing we have a

query processing or query execution tree.

And I can have for the same query different sort of execution trees in the sense that I

push the sometimes a select below the things, or non spatial operations before spatial

operation etcetera. And based on that my overall cost may be dictated; that is because

when we call whatever we are using at a much higher level like at the SQL, we are going

select clause or some other like spatial joined or topological operation like overlap and

so and so forth touch and type of things.

So, when we use that, those for those there are underlining different strategies which are

being executed right. So, I use say spatial join operations. So, there can be two three

algorithms for this spatial join operations. Now, out of this one, one will be picked up

right. So, and every strategy, every algo has his own cost right. So, the algo which is

picked up will be taken above the things, will be executed based on the cost.

Now, which algo need to be picked up also may depend on different type of parameters,

like total like load on the database right, the cardinality of the database etcetera right. If

the database size is pretty small I do not care that whether any of the algo could have

been good all right. Or even spatial non spatial any of the functionality to execute maybe

good; but if the database size is pretty large then I may want to execute the non spatial

database, so the overall cardinally reduce and then etcetera.

So, these things are I need to have a query. So, here also it is true, like DBMS

decomposition query into the building blocks; keeps a couple of strategies for each

building blocks; selects more suitable for one for the given situations right that is the

situation in the sense. So, that over based on the metadata.

Now, this is true for any database, for that matter this is more critical first any type of

spatial database, because the data load is pretty high and we have seen that I O cost and

compute costs are dictates together; it is sometimes difficult to put the whole data into

the main memory, so there are lot of challenges into the things.

But again with the normals standard spatial database and with the spatial networks there

are some difference, they are the here this basic building blocks may be different right.

Here the there, here we have things like connectivity, finding a shortest path and type of

these are the building blocks; which are not there in case of a say to polygon to polygon

there may not be as such there is no meaning of shortest path unless you define

something like that right or there is no meanings of like connectivity between these two

polygon unless we define is as such there is no default type.

So, here the type of buildings blocks changes because of the behavior of the things right.

Here the definition of proximity also changes right, as we have discussed because A and

B if it is connected via a edge they are proximity rather than something which is not

connected right. Because if you follow the spatial network or the physical proximity or

the Euclidean distance maybe may not be the deciding point that which is near type of

things right.

So, the way of proximity things also differ or here the range queries etcetera also make

differences, because it may not be the within this bounding box things are not always

true. And for that we have different little different kind of dealings for this; like here the

building blocks as we see that for graph transitive closure operation is the connectivity

right, one is the connectivity is node B reachable from A that is the thing right

So, I require it has a deep closure right A say A and B, A to C, C to D, D to E, E to B

then A to B is reachable right. Shortest path A B identify the least cost path from the

node A to node B right. So, there is the shortest path between two node A B in a thing;

rather than these rather I should say that it is more delete we are finding more delete of a

graph theoretic approach, which are not generally required for our standard or spatial

databases.

(Refer Slide Time: 06:20)

Now, we have different strategies for graph this transitive closure categorizing strategies

for transitive closure, building blocks strategies for connectivity query, strategies for

short shortest path query, assumption on the storage area holding the graph tables, main

memory algorithms, disk based external algorithms right. So, these different type of

algorithms can be there.

So, representative strategies for single pair of shortest path, if I want to have a one pair of

shortest path, main memory algorithm. So, connectivity we know that BFS, DFS are very

values and standard breadth first search and depth first search; whereas there are for the

shortest path we have the this legendary Dijkstra’s algorithm. And there is a variant

where we use heuristic of finding a best first algorithm where we you some evaluation

function finding the predicting the that cost of from V for a node V to the destination D

and type of things right.

So, if you see these are the things which are standard for our graph theoretic operations

also right. These are the things which we use in our graph theoretic operations, like and

so if you have representative strategies for single pair shortest path, main memory

algorithm connectivity and shortest path and this disk based and external shortest path is

hierarchical routing algorithms right. So, you will see that instead of doing taking

everything on the things I can do hierarchical, like I want to find out from say point in

Kolkata to point in Bombay find out the shortest path between that is two right.

Now, keeping the whole network, loading the whole network into the main memory may

not be feasible. So, we need to go for some sort of a hierarchical routing things; in some

scenario it may not be the best solution or the optimal solution I may not be able to find

out, but this some optimal solution is pretty good to work with right. So, connectivity

there are other things, like connectivity strategies are already implemented in relational

DBMS like there are several strategies which are already implemented in the like BFS

DFS etcetera which are there in the standard DBMS.

(Refer Slide Time: 09:04)

So, again coming back this breadth first search these are known just to quickly. So, visit

descendent of the by generation and children before the grandchildren right. So, first

children, then the grandchildren like in this case. So, 1 2 4 5 4, 1 2 4 3 5 right these are

the things the way we do this BFS in case of a DFS try a path till the dead end and

backtrack to find the different paths like 1 2 3 4 5 and this is the way we look at it right.

So, this is the standard DFS, BFS and the algorithms are there in any standard book or

internet media you can also find these algorithms in this referred book what we are

referring to, this if you are not knowing to that; but DFS, BFS all we have used widely.

(Refer Slide Time: 10:10)

And Dijkstra’s algorithm that is a identify path to descendent by depth first search, each

iteration expand the descendent with the smallest cost path so far; like so each level, we

find out the smallest cost and go to the next level. Update the current best path to each

node, if the better path is found right. So, we go on updating the things this is a standard,

like if you considered shortest path 1, 5 for the graph that what we have seen here, then

what we see expand it in 1, 2; 1, 4; 1, 2; 1, 4 then cost of 1, 2 is square root of 8; 1, 4 is

square root of 10 and the edge table of 2 d will see here right.

(Refer Slide Time: 11:04)

So, this is 1, 2 1, 4 sorry. So, we found select 1, 2 with 8 and 4 and we found at particular

edge table and then set iteration 2 expands with the node 2 and edges 2, 3, 2, 4 similarly,

2, 3, 2, 4 and then set cost 2 4 to the edge 4, 5 and iteration 4 iterate to the 3 to the node

4, 5 and this.

So, what we do every step if you look at. So, initially 1, 2 and 1, 4 right and then finding

out the cost 2 and 4 in the things, as from the 2, 3 and 4, 3 does not lead to anywhere 4 to

5 and 5 to 1. So, this is my adjacency list matrix and while calculating what we are

having 1, 2, 4 root 8 10 for this and then using this table we calculate this consecutively

shortage path right. So, every layer we are expanding and the shortest Dijkstra’s says that

the which is the node with the least cost will be again expanded and go on updating the

table as and when we go.

So, that is a denorm form of the things, node table, like we have. So, this is the

representation of the graph one is the adjacency matrix, another one is a list, finding the

node coordinates and the edge relationship and from these I can calculate the different

things right; like here how we calculated right 2, 2, 3, 4 and iteration 4 to edge 4, 5 and

iteration 4 expands the node 3 to the 4, 5 and stops at 5, if we as we find.

So, my shortage path here it becomes 1, 4, 5 right, because of this it is the least cost

right. So, there is a concept of I in order to finding the predecessor successors I can have

a denormalized tables right. So, it may not be a normalized table and denormalized

tables. So, that it if I have a denormal table the searching maybe higher, maybe faster in

some of the cases.

(Refer Slide Time: 13:41)

So, there is a variant of the Dijkstra’s which is as best first algorithms, which uses

heuristic, like given an effective estimated cost function it is faster than Dijkstra’s

algorithm to finding that what is the estimated cost function. If you revisit, the shortest

path of the things iteration expand 1, 2, 4 square root and estimated cost 2 and 2 to 5 is 5

estimated cost to 4 to 5 is square root of 5, 2 expand the least cost 4 to the thing. So,

there is a estimated cost at the looking at the front.

So, if we if that cost function is a strong function or it is a means the cost function is a

good one, then you may have a faster convergence than Dijkstra’s algorithm right. So,

otherwise similar to Dijkstra’s with change that cost node is actual cost between source

and node plus estimated cost between node and destination. So, I do a look ahead type of

things, what is the estimated cost in things.

Estimated cost should be and under estimate of the actual cost, so example Euclidean

distance and type of things right. So, that I do a estimated cost of the things right. So, this

is the variation of the things, again this is a standard strategy for any graph theoretic

application and you can always consult any standard book or even this referred book.

(Refer Slide Time: 15:10)

So, if we look at the shortest path strategies, so Dijkstra’s and best first algorithms, like

work well when the entire graph is loaded in the main memory right. So, if we these are

pretty good where it the enter graph in the main memory, otherwise the performance

degrades substantially. So, if the graph is not in the main memory. So, there is a

degradation of the performance of these things. So, that is a challenge.

Hierarchical routing algorithms works with a graphs on the secondary storage, right. So,

there is a another strategy which is the hierarchical routing algorithms. So, at the my

number of size of the graph is pretty large. So, it in the secondary storage loads small

pieces of the graph in the main memory, can compute least cost routes within that

particular things; that means, I look at the things in a hierarchical fashion.

So, if you look at that basic idea behind these hierarchical routing algorithm. So,

fragment the graphs, pieces of original graph obtained via node partitioning right. So, I

want to do the fragmentation of the graph; boundary nodes, node of with edges of two

fragments right. So, I have some of the things at the boundary nodes and boundary

graph, the summary of the original graph. So, contains boundary nodes, boundary edges,

edges across fragments or the paths within the fragments right.

So, just to reiterate; so, what we have seen that Dijkstra’s and best first algorithms are

good and widely used, but the one of the major constant is that they perform well when

the whole thing in the main memory; but if you look at our typical spatial networks. So,

this is a the sometimes the networks are pretty large.

 So, it is difficult to feed the whole thing into the main memory so; that means, you have

to do lot of disc accesses right. So, it is in the secondary storage. So, the they in that

cases the Dijkstra’s and the best path best first algorithms performance pretty,

performance degrades substantially when we have lot of disc accesses like that.

Now, that is why one of the another values algorithm is a hierarchical routing algorithm.

So, works with graphs at the secondary storage, load small pieces of the graph in the

main memory and can compute the least cost route on that graph, on that particular

loaded graph and I can have some functionality of finding the whole route of the whole

from source to destination.

So, basic idea, that the fragment the graph is the original graph via node partitioning. So,

some sort of a node partitioning, we partition the graph. Boundary nodes; nodes with

edges to two fragment. So, if I have some nodes which are on the edge of the two

fragments both here and there, then I considered those are the boundary nodes. And

boundary graph, the summary of the original graph is the boundary graph. So, instead of

considering those say I want to find out the a point in Kolkata to a point in Mumbai right,

shortest path.

Now, I consider this Kolkata as a particular boundary. So, whatever the road network or

transport network is there within the Kolkata is as considered as a one sort of a boundary

graph and Bombay may be. And then I find at the least cost between these two and then I

expand within this Kolkata thing and Bombay thing to find out the shortest path right.

So, contain boundary nodes boundary edges, edges across fragments or the paths within

the fragments right. So, boundary edges are the, edges across the fragments and paths

within the fragments which are there in the boundary edges.

(Refer Slide Time: 19:26)

So, looking at that thus a summary of optimal path in original graph can be computed

using boundary graph and the thing for the hierarchical. Summary can be expanded to

the optimal path to the original graph, examining a fragment overlapping with the path

right, loading one fragment in the memory at a time. So, I fragmented. So, loading at the

at a time finding the this minimal or shortest path and then considering those things to

calculate the actual shortest path.

So, what we see that, will do a small illustration also available in this particular referred

book. Figure in some of the figures in the next slide, so figure a; fragment the source and

destination nodes.

(Refer Slide Time: 20:12)

So, like here as we are discussing that. So, we have a one fragment a say and then

another there right. So, figure b. So, in this case what we consider, you see there is a

choose boundary node pair minimum cost S, B a to cost B a B d equal to cost plus cost of

B D. So, they are two some of these boundary nodes, boundary nodes to reach this

boundary nodes of this particular a. So, if this is a and say b and then from here to this

destination. So, I may have this is my optimal minimum path, from there this is a

minimum path and there we go to the destination.

So, this can be a one of the path. So, minimize the cost of S B a, the boundary of this

particular set a, cost of this a boundary of a to boundary of b, cost of boundary of d to

boundary of d determining the cost maybe a nontrivial right. So, this is the way we try to

handle the thing. So, I fragment the graph into the things and it makes also obvious, like

if you think of Kolkata and Mumbai right. So, there are some defined exit point from the

Kolkata right, it is not like that anywhere you come out of the things right. So, also there

are exit-entry point in Mumbai and Kolkata they are different.

Now, this network is again connected by national highways and type of things right. So,

if we take the whole thing whereas, the complexity of the network within the city zone or

this metro cities will be pretty complex right. So, and this at most of the times, this

distances of this type of large distances dictates more than this is a shorter distance. So, if

you look at logically also then I we can we take this Kolkata thing and find out this from

destination what are the different, which is the minima, which has the different cost to go

to this boundary nodes right. Here also what are the different cost go to the boundary

nodes and then I connect the things right. So, this make lot of sense into the things right.

So, this is the figure a, fragment the source and destination nodes and then figure b,

compute summary of the optimal path using boundary graph and two fragments; note use

of boundary nodes only in the path computation right.

(Refer Slide Time: 22:47)

So, now, here we are not considering the inside nodes all the things right. So, first of all

we have fragment, we have considering only these boundary nodes which is pretty finite

and can be have less memory loading and find out this to find out this minimum path

computation, right. So, I fragment this things and this boundary nodes used for the

fragmentation.

Then what we do summary of the optimal path using boundary edges right. So, in the c,

so we summarize these optimal path using this boundary. So, this to this so, but there is

no path par se like this, I need to go somewhere like this right here also there is no

Euclidean path from we have to jump into the things, we have to follow something right.

Nevertheless I can find from the source to destination using this boundary nodes and this

boundary paths right. So, summary of the optimal path using boundary edges and finally,

expand that back to the optimal path in the original graph.

(Refer Slide Time: 23:52)

Now, the finally, what we do, then now we find out from here to here going to the what

is the optimal path, shortest path into the things right; then finding the shortest path and

shortest path and going to the things. So, this becomes my actual path between the source

s and destination d right. This is this way, we can now handle a large graph or a which

are maybe true for when we work with spatial graph of a large area, finding from here to

Mumbai or here to Bangalore or Trivandrum etcetera it is a large graph. So, we have

different fragments and type of things.

Just to again recap. So, initially we divide into different batches or the, what we say

different smaller graphs. So, fragments, the source and destination smaller graphs; then

this boundary nodes, based on these boundary nodes we try to calculate this shortest path

right from the source and destination.

(Refer Slide Time: 25:01)

And then find out the shortest path based on the boundary nodes and the source and

destination and then expand those into the graph all right. So, in doing so if you look at

we oppose the problem in a hierarchical fashion right. Initially at the bottom in the

hierarchy we have those number of graphs and this, otherwise the number of nodes will

be pretty large; but here the number of nodes are much lesser and type of things right.

So, by this we can have a hierarchical strategy to find out the shortest path between a

node in some network fragment is a to another fragment b and type of things b or d a

something right, like as we giving that from Kolkata to Mumbai and doing.

(Refer Slide Time: 25:56)

So, now given set all these things, we need to look at that how do I store data right. Like

how do I manage and store data. If you recollect we used to do in a something space

filling curve when there are queries or the range queries, point queries and type of things;

but here those things type of queries are less. Rather here that queries are find, insert,

delete definitely get a successor of a node, get a predecessor of a node, get a set of

successor, set of predecessor these are the things which are predominant.

So, my, so rather I need the node and that connectivity of the node; if it is a directed

graph, then I know need to know that from where to where it goes and type of things

right. So, given a spatial network find the efficient data structure to store it on the disk

sectors right. So, minimize I O cost of the operations. So, find, insert, delete, create these

are the operations for finding, inserting data, deleting a removing data, or create

something table and type of things.

And there are functions like get a successor, get set a get successors, or get predecessor,

get predecessors and type of things right. So, there is a constraint that the spatial network

are much larger in many cases than the main memory. In other sense I cannot store the

data affront on the main memory and work on the things. So, that is one of the major

challenge out here.

So, problem with geography geometric indices like R tree n type of things; the cluster

objects by proximity not by edge connectivity right. So, it is by proximity if not the edge

connectivity. So, it is more of a how code, uncode Euclidean distance by it is proximity,

but the edge if I do the road network or the edge connectivity maybe much larger. So,

our typically R tree type of structure looks at that proximity rather than connectivity.

Performs poorly if the edge connectivity is not correlated with the proximity. So, if the

edge connectivity something and the proximity something, then it is perform poorly

right. And so, we the trend is to or what we try to use is to look at graph based methods

or graph theory application of graph theory or graph theoretic approaches and doing so.

(Refer Slide Time: 28:38)

So, inside I O cost of operation that is get a successor, minimized by maximizing CRR

right. I O cost of operations get a successor that is minimized by CRR, what is CRR? So,

CRR which is connectivity residue ratio right, which is basically a probability of the

node pairs connected by an edge are together in a disk sector right.

So, our everything is based on edges. So, what is the chance that if I take a something on

the form a disk sector what is the chance that the node pair are can be retrieved on a one

call right. So, that is a thing or in other sense connectivity ratio we define the total

number of unsplit edges, total number of edges right, if we this is the ratio of the things.

Like in this example, suppose I have a graph like this right 1, 2, 3, 4, 5, 6 and type of

things right; now this adjacency list table with node records. So, this is the adjacency list

tables with node records. So, 1 is connected to 2, 5, 6; 2 is connected to 3 and 5; 3 is

connected to 4; 4 is connected to 5; 5 to 6 and 6 to no one right. So, this is the successor

and predecessor is accordingly on the other side like 1, 3; for 1 there is no predecessor;

for 2 the predecessor is 1; for 3 is the predecessor for 3 the predecessor is 2 it is 2 may be

this type over this is not very clear.

So, for 3 the predecessor is 2; for 4 the predecessor is 3; for 5 the predecessor is 4 sorry 5

is one is 4 one is 2 another is 4 ah, for particular 5 actually for 5 the predecessor is 1, 2, 4

right these are the three predecessor. Again there is a missing thing here and for 6 the

predecessor is 1 and 5 right. So, there is few type of. So, we this should be 2 this should

be 1, 2, 4 will correct it.

Now, a consider a disk holding three nodes records; say let us considering a particular

disk is holding three node records. So, it is let us consider the selection as 1, 2, 3 and 4, 5

6. So, if it is 1, 2, 3 see that what how many unsplit edges you can take. So, total number

of edges 1, 2, 3, 4, 5, 6, 7, 8, so total number of edges is 8, if it is 1, 2, 3 in the one disk.

So, what are the unsplit edges. So, 1 to 2 2 is 1; 2 to 3 is 2. So, 2 unsplit edges if 1, 2, 3

for 4, 5, 6 on the other disk unsplit edges are 4 to 5 and 5 to 6 another two.

So, 2 plus 2, 4, right. So, 4 divided by 8 is my connectivity residual ratio right or CRR

right. So, ideally CRR if it is had it been all are in a single go, then it would have been

much easier to do the things right. So, if instead of that if I have the CRR, if I have kept

1, 2 say 1, 2, 5 into one disk and 3, 4, 6 in other disk right if there is arrangement. So, 1

to 2 will be 1; 2 to 5 will be 1; 2 to 5 will be in the 1 edge and 1 to 5 will be another

edge. So, 3, count is 3 and as it is 2, 3, 5 6, so 3 to 4 one, then there is another is 2, 3, 4 6,

so 3 to 1, so that we do not gain anything out here.

But I can have, what we mean to say choosing this node appropriately I can have this

different values of the CRR. In other sense this dictates that how I that gives me a

possibility that how I store the data into the storage appropriately. So, that I get a better

means better performance in terms of the I O retriever.

So, in today’s discuss what we tried to look at is that what are the different building

blocks, what are the different strategies for the things and also at the aspects of what we

has thing that connectivity CRR, connectivity residue ratio by what will be the back

falling back to the things. We also looked into the hierarchical approach where the

spatial networks are pretty large and then how to handle are all those things right.

So, with this let us conclude our discussion today. We will little bit look into this again

this CRR calculation and associated thing, so related to disk in our subsequent lecture ok.

Thank you.

