
Software Project Management

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 58

Software Reliability – II

Welcome to this lecture. In the last lecture we were discussing the difference between

hardware reliability and Software Reliability. We said that hardware reliability

measurement is a relatively simple problem, because the failures there are due to wear

and tear of components. And, once we replace the broken component, the reliability

comes back to its previous reliability or the reliability is maintained.

Whereas, in software the failures are not due to wear and tear, these are due to bugs and

to correct the failure it is debugged and the error is corrected. And therefore, the

reliability increases or the inter-failure times increases. And therefore, the reliability

keeps on changing in case of software whereas, in case of hardware the reliability is

maintained.

(Refer Slide Time: 01:40)

Now, let us look at this issue a little deeper. This is a typical behavior of a hardware

system, here we have plotted the failure rate that is number of failures per unit time with

the time of users. For a automobile or something it may be let us say for a period of 30

years or something and for a simpler system it may be 1 year and so on. Now, every

hardware system it shows this kind of behavior that initially the failure rate is very high

and then with time it decreases. It may be automobile, it may be a mixer grinder, it may

be a refrigerator, it may be a television set.

Any hardware system initially shows very high failure rate and the failure rate keeps on

decreasing and then for a long time the failure rate is maintained. The inter-failure times

remain constant over a long period of time that we have shown the symbol. And, this is

called as the lifetime of the system; when the failure rate starts to increase. And, this is

called as the bathtub curve, it is a typical model of any hardware system reliability.

Initially the weak systems, the weak components each hardware system is made up of

many components. Initially the weaker components they fail and may be the interfaces

among components they fail recurring interfaces.

So, this is called as the burn in where the weaker components and weaker interfaces

among components they fail and then they are repaired and reliability becomes high,

stable and maintained in this rate for a long time. Typically, the initial part is covered by

the manufacturer’s warranty otherwise the people will not buy the hardware system

because, it is showing a very high failure rate.

Typically, all good manufacturers cover this part by the manufacturer’s warranty because

of the burn in. The reliability is maintained and at the end of the lifetime, this point is the

lifetime the failure rate starts increasing. And, here most of the components are worn out

and the major components start failing.

(Refer Slide Time: 05:08)

In contrast to a hardware failure curve, the software failure curve appears like this. It

should actually the ideally it should appear like this violet curve, that as the time passes.

The different problems or failures are reported and these are corrected and typically the

failure rate is high of the for the software, any software. Once, these are released and

these are fixed, as they are fixed the reliability improves and the failure rate comes down

and then it slowly becomes better and better. Initially, there is a steep fall because the

frequently occurring failures or the failures in the core part of the software get noticed

and they are repaired.

And, each of those repair causes a huge improvement in the reliability and later slowly

the more esoteric or rarely used parts of the software errors are found and those are fixed

and they little improve the reliability. But, actually the curve is not like this, the actual

software failure curve is that initially there is a rapid increase in reliability or decrease in

failure rate. But, then this is not smooth curve throughout and the curve I have just

shown few of this once here, but throughout this there are glitches like this. Each time

there is a failure reported and these are corrected, there is a jump here because of a fix

causing other bugs to appear.

Of course, sometimes the fix may be very proper, but sometimes a fix, bug fix may cause

new bugs to arise and therefore, the reliability decreases after a fix. And, then after

sometime the reliability decreases; initially the reliability increases or the failure rate

comes down and then there is temporary glitches, these are due to the bug fix creating

new bugs. But just see the trend here, the unmistakable trend here is that the reliability is

decreasing over time. Why is that? The reason is that because of many bug fixes slowly

the structure of the software becomes poor. And therefore, the reliability becomes poor,

many ad hoc fixes degrade the software structure and therefore, it gets poorer reliability.

We can see that the failure curve for software is very different from the bathtub curve for

hardware systems. In other words the behavior, the reliability behavior of hardware and

software are very different.

(Refer Slide Time: 09:21)

Now, let us see how do we measure reliability because, the user should be interested.

They may specify the level of reliability for a software, typically for safety critical

software they would definitely give a reliability figure. And, even the other users they

are concerned about the down time, the frequency with which failures appear and so on

and they may specify a failure rate for a software, they would like to install on their

systems. But, using what metrics? Let us look at that issue that what are the metrics for

measuring reliability.

(Refer Slide Time: 10:12)

Of course one very basic issue with software is the different types of users use the

system differently. And therefore, we cannot give different ratings to the same software.

We need to give one reliability rating and that should be observer independent and all

users should agree on that rating.

(Refer Slide Time: 10:41)

Now, let us see the reliability metrics for hardware, would they be useful for software.

The mean time to failure is very popular hardware reliability metric, it is the average

time between two successive failures or the inter-failure time. The mean inter-failure

time that is mean time to failure, here the software sorry the hardware this is a hardware

metric we are trying to discuss whether you can use it for software. For a hardware

system it is put to use for a long time and the and the failures are observed over this time

and the average time to failure is computed from this.

For example, let us say this is the time of uses, there are correct operations after quite

some time there is a failure. For a car may be the wheel has worn out and then again

correct operation and then there is a failure, may be the battery has run out; replace the

battery. And, then again there is a correct operation and then there is a failure may be the

wire has got heated and shorted. So, replace the wire and again correct operation. The

time between one failure to another failure is the inter-failure time and we can measure

the inter-failure time for different failures and then compute the mean of that, that we

will call as the mean time to failure.

(Refer Slide Time: 12:54)

But, mean time to failure would not be very appropriate for software as per hardware

because each time there is a failure, the bug is fixed and the rate of failure changes. For

hardware it is a very reliable metric because the reliability is maintained and its

meaningful to observe it for a long period and measure its reliability. But, for software

reliability keeps changing, it improves typically, but then there can be glitches or the

software may degrade due to a bug fix, the reliability may degrade and therefore, it either

increases or decreases. So, the mean time to failure where we observe the inter-failure

times not be a really very appropriate metric.

(Refer Slide Time: 14:03)

For a hardware system typically the failure times are recorded, let us say the failures

occur at t 1, t 2, t n and then the inter-failure times are computed. And, then they are

summed the total number of inter-failure times and divided by the total number of

failures. So, computing the MTTF is straight forward. MTTF = Σ(ti+1-ti)/(n-1)

(Refer Slide Time: 14:46)

But, what about rate of occurrence of failure, this is another metric. Here the frequency

of occurrence of failure is obtained. We observe the time period, long enough time

period and find how many failures have occurred and then from that we find the number

of failures per unit time. So, that is called as the rate of occurrence of failure. We just

count how many failures and then the total time of uses and then find the number of

failures per unit time or the rate of occurrence of failure.

(Refer Slide Time: 15:31)

But, another issue is that once a failure occurs, it takes some time to fix the bug. There is

a repair time because each time there is a failure, there is a repair time. For a hardware

may be need to identify which component has failed and then replace the component.

And for software debug, find out the bug, correct the code; but in both cases hardware

and software there is a time to repair which is the time to fix the bug. So, each time there

is a failure some time is needed to fix it, that we call as the mean time to repair.

(Refer Slide Time: 16:33)

If we consider mean time to repair, in the previous case we just considered mean time to

repair is 0. But, if we really consider the time to repair then the mean time between

failure is the mean time to failure plus the mean time to repair. This is the time a system

is not used, mean time to repair and mean time to failure is the time the system is used.

And, the mean time between the failure is once the failure occurs when is the next failure

expected that is MTBF is MTTF plus MTTR. MTBF=MTTF+MTTR

If we say that MTBF of 100 hours; that means, that once a failure occurs the next failure

will occur after 100 hours and this includes the downtime of the software. Once a failure

occurs the next failure is expected after 100 hours of clock time, that is including the

downtime and it is not the run time of this software.

(Refer Slide Time: 17:57)

There is another metric, the probability of failure on demand; unlike the MTTF and rate

of occurrence of failure, the probability of failure and demand does not involve a time.

We do not measure it over a interval. Here we just keep on executing the software with

different functionalities and found out, if we invoke the functionality with different data

test input for 1000 times. How many times did the software fail?

If it is the probability of failure and demand is 0.001 that is on; that means, that if we

executed the functionalities of the software 1000 times, then only one failure was

observed. This is a more meaningful metric for software, because unlike a hardware

which is continuously used, a software does not run unless a function is invoked. If the

user invokes let us say each function, it runs for a fraction of a second or something and

waits for the next input. So, the system is not running continuously unlike a hardware, let

us say car is running for 10 hours, it is continuously the hardware is being used.

Whereas, here the software each time the user invokes a functionality, the software runs

for a small time and then keeps waiting for the next input. And therefore, observing the

software reliability over a period of time is less meaningful because, the question comes

is that how frequently were the functions execute. Because, the software is not really

running all the time, much of the time it was waiting for the user input. So, the

probability of failure on demand is more appropriate metric for software.

(Refer Slide Time: 20:35)

We can also define another metric called as availability which is basically characterizes

the likelihood of the system being available for use to the user over a period of time. And

of course, it will consider the failure time and the time to repair which we call as the

downtime. And, based on this we can give a availability number that is a user once trying

to use the software how likely that the software is available for use. Because, it may be

undergoing, it might have failed, it might be undergoing debugging and so on.

(Refer Slide Time: 21:32)

The availability metric is important for systems which are not suppose to be down, they

run continuously. For example, an operating system or a telecommunication software.

(Refer Slide Time: 21:48)

But, then we have two notions of availability: one is the operational availability and the

other is inherent availability. In the operational availability we just consider the mean

time between maintenance and the mean down time, whereas, the inherent availability is

the mean time between failure and the mean time to repair.

Operational availability
MTBF

MTBM MDT




Inherent availability
MTBF

MTBF MTTR




So, here we just consider the time between failure and the repair time, whereas here we

consider the mean downtime. The downtime is different from the meantime to repair, in

the sense that this is the time to repair.

But, then there may be preventive maintenance, there may be initialization study and so

on why the system is down. So, the mean downtime is a more general measure of the

downtime which not only the repair, but also the system may be down due to various

reason including preventive maintenance, routine initialization etcetera. So, the

operational availability is the actual availability to the user whereas, the inherent

availability is a ideal notion of availability; where we do not have preventive

maintenance etcetera. The only downtime is due to the repair time.

(Refer Slide Time: 23:38)

But, if we just look back into all the metrics that we discussed, all the metrics are

centered around the probability of the system failure. And, they do not take any account

of the consequence of failure, but in reality some failures are very severe, they just the

system hangs. We need to reboot, work is lost and so on. Whereas another function,

another failure may be that the current system, the current function invocation did not

work, but the system did not hang; just need to try different function or the same function

the second attempt it may work and so on.

So, the severity of different failures may be different. If we just consider all failures

occurring over a period of uses that may not be very proper. We cannot compute all

types of failure and then come up with a reliability metric, because some may be very

insignificant failures. And, if we only count the severe failures like cross type of failure

that also will not be proper. So, how do we go about handling this problem? The

different failures have different severities.

(Refer Slide Time: 25:10)

Some failures are transient and consequences are not serious and they are of little

practical importance. At best they may be just minor irritants may be the mouse did not

work, but next time the mouse worked and so on.

(Refer Slide Time: 25:41)

How do we handle this problem? We handle this problem by defining a failure class,

different classes of failure.

(Refer Slide Time: 25:53)

We classify the different types of failure. Transient: this class of failure they occur only

certain inputs, permanent failure they occur for all input values, some function they fail

for any input value. But, let us say only fails per one input value when we give only 100

it fails, for all other it work satisfactory; then we call it as transient. Permanent it fails for

all input values, recoverable that the system did not hang. We could recover either the

user himself or with operator could recover and again without rebooting we could use the

system.

(Refer Slide Time: 26:45)

Unrecoverable the system might have hanged, we might have to restart the system those

are unrecoverable. And, the cosmetic are the ones which are minor irritants, they do not

really cause incorrect results or something, but just minor irritant may be the user need to

sometimes press the mouse button twice. So, we can measure the reliability for each

class of these failures and that will give a better idea of the reliability.

Maybe the reliability by considering the unrecoverable and the permanent of time type of

failure or may be ignoring the cosmetic failure we can measure the reliability and so on.

So, far we have looked at the reliability metrics and some very basic issues and then in

the next lecture we will discuss about how to go about measuring the reliability of a

software. We will stop at this point.

Thank you.

