
Software Project Management

Prof. Rajib Mall

Department of Computer Science and Engineering

Indian Institute of Technology, Kharagpur

Lecture – 57

Software Reliability – I

Welcome to this lecture. In the last lecture we had looked at some very basic aspects of

Software Reliability. We had said that quality and reliability are closely related and the

software quality to large extent is determined by it’s reliability.

If a software is of not if poor reliability we cannot say that it is a good quality and with

that intention we started discussing about some very basic aspects of software reliability.

Like what do we mean by Reliability? How do we formally define reliability? And then

we were discussing about why software reliability is much difficult to measure why the

software reliability study is very different from hardware reliability study and so on.

(Refer Slide Time: 01:26)

Now, let us continue from that point onwards. We will first briefly look at why software

reliability measurement is a much harder problem than hardware reliability measurement

or measurement of the reliability of any other equipment, structure and so on. And then

we will define some metrics for software reliability measurement and then we will say

that to meaningfully estimate software reliability. We have to use the two approaches

which is reliability growth modeling and statistical testing and we will see the pros and

cons of both these approaches.

(Refer Slide Time: 02:14)

We have been saying that measurement of software reliability is a hard problem. There

are many factors which contribute to making this hard problem, the first issue is that a

software will have many errors and one would expect that if we can estimate the number

of errors we can derive the reliability from that. But unfortunately all errors do not cause

failures at the same frequency and severity. Actually there is a very very wide difference

with the frequency with which different errors called system failure and also the severity

of the system failure.

There are some errors which rarely show may be after a million hours of uses may show

up once. Whereas, another error may show up even in the first minute of users, the error

which is occurs very rarely if we remove that error it will make a very little difference to

the reliability of the software the perceived reliability. But the one which appears again

and again in the form of failures that would result, if we can eliminate that error it will

result in significant improvement of the reliability of the software.

From this argument it is clear that even if we are somehow been able to estimate a

number of errors remaining in software, that is not enough to estimate the reliability of

the software. If this is the software then as the code executes some code some part of the

code that executes almost all the time, the other part does not execute as frequently and

this part marked in the red is called as the core of the program those statements are

executed again and again.

(Refer Slide Time: 05:00)

The 90-10 rule says that 90 percent of the execution time is spent only in 10 percent of

the instructions of the program, the rest 90 percent of the instructions execute only 10

percent of the time and 10 percent of instruction execute 90 percent of the time.

And therefore, if we remove a error appearing in the core part that will result in a

significant improvement of reliability. Whereas the one which is very rarely used would

make hardly any difference to the reliability.

(Refer Slide Time: 05:46)

Some studies suggest that if a software has let us say thousand bugs and if we remove six

hundred of those bugs which are there in the noncore part. It results only 3 percent

improvement to the reliability, very very surprising result, that removing almost more

than half the bugs results in only 3 percent improvement. Because those bugs happen to

be in the noncore part and this issue makes reliability estimation from the number of

latent error estimation not very feasible.

(Refer Slide Time: 06:47)

The reliability improvement from correction of a single error depends to a large extent

whether the error belongs to the core part or the noncore part of the program, this is one

issue which we need to keep in mind when we think of software reliability.

(Refer Slide Time: 07:11)

Another issue so this is still in the first issue, because the frequency with which a error

causes failure depends on the part of the program at which the error lies. Therefore, the

system reliability the observed system reliability and the number of latent software

defects, there is no simple relationship otherwise you can derive or empirically propose a

expression in which you should be able to input the number of latent software defects

and get the reliability. But this is the main reason why we cannot do that.

Now, let us look at the second issue, the second issue is the failure rate is observer

dependent, a software which appears to be very reliable to one person may appear to be

very unreliable to another person. Now, let us investigate the reason behind this.

(Refer Slide Time: 08:33)

Let us say one user selects inputs or executes the software. So that only the correct

functionalities are executed a software has hundreds of functionalities and let us say each

user is interested in executing only part of the functionality. Let us say a library software

the students or the members are interested to issue the book, return book, query book and

so on. The librarian would be executing the functions create member, delete member

create book, collect statistics and so on.

The accounts department would again be using the same software, but executing very

different functionality. Like what is the income from fee collection membership

collection how much is from the fine collection how much grant is received how much

books have been procured this year and so on.

So, every user every type of user use different functionalities of the same software. Now,

let us say one type of user they are executing functionalities which are correctly

implemented functions and they find that all the functions they execute work perfectly all

right and they would give the opinion that the software is really good highly reliable. On

the other hand for another category of users almost every function they execute displays

failure error and so on and they would form the opinion that the software is of poor

quality it is unreliable.

(Refer Slide Time: 10:36)

And therefore, for the same software two different users can have two different opinion

about it’s reliability. The opinion of a user about the reliability of a software we call as

the perceived reliability. So, the perceived reliability can be low for one group of users

and the perceived reliability can be high for another group of users.

(Refer Slide Time: 11:08)

We are just mentioning this point the different users of a software application, they use

the software in different ways they are interested in different functionalities and therefore

the failure which shows for another one user may not use so for another user.

So, different users can come up with different reliability numbers for the same software

and therefore it is clearly observer dependent. But again if we have to give one absolute

value how do we do it, which user will take into account. Because we will get different

numbers for different users, we will see how to handle that problem, but then it makes

reliability estimation complicated because the reliability has different observers give

different reliability numbers to the same software. And it makes it difficult to give a

absolute reliability number a single reliability number to the software.

(Refer Slide Time: 12:44)

The way it is done that is to give a single reliability number is to consider the operational

profile of the software. And the if you have to give a single number we will have to give

it based on it is operational profile. Since the perceived reliability depends to a large

extent on how the software is used or in other words it is operational profile. Let us first

define what is operational profile and then we will see how to give a single reliability

number to a software.

(Refer Slide Time: 13:33)

Let us say a software has many functionalities F1, F 2, F3 etcetera and also each of this

functionalities will have different scenarios of operation. Let us say this is a ATM

software, bank ATM and then one function is withdraw cash, one is the main line

scenario that is, go there do everything correctly give password insert the amount to be

withdrawn and cash is dispensed come out.

The second scenario is that the password may be incorrect or the card may be rejected or

may be that the account does not have enough balance. So, that is another scenario one

more scenario can be that the ATM does not have enough money to dispense and so on.

So, the same functionalities can have different scenarios of operation. We can observe

the execution of these different functions by the users, we can take a log of that as the

different users use a log gets collected and we analyze which function and which

scenario gets executed how many times. So, that is function and the probability of

occurrence we might have these three functions F1, F2, F3 and we may determine that

one scenario the first scenario F11 gets executed 40 percent of the time, F1 2 the second

scenario of the F1 function gets executed 10 percent of the time and F1 3 the third

scenario for F1 get executed 10 percent of time.

The first scenario of F2 gets executed 5 percent of time and the second scenario gets 15

percent of time. The first scenario third use case the third function gets executed 15

percent of time and the second scenario of the third function gets executed 5 percent of

time. And this we call as it is operational profile of the software. Let me just repeat here

that the operational profile of a software is constructed by observing the way the

software is used by various users over a long enough period of time and then finding

what is the rate at which the different functions get executed. The probability that the

first scenario of F1 gets executed is forty percent and so on, this we call as the

operational profile of the software.

(Refer Slide Time: 16:42)

And once we have the operational profile that is the average system users of all types of

users and therefore based on the operational profile. We can give a single reliability

number to a software and that we will discuss a little later how to go about giving a

single reliability number to a software based on it’s operational profile. And we call that

a statistical testing.

Now, let us look at the third issue which makes reliability measurement difficult, this

problem is that the reliability of a software keeps on changing throughout it is life cycle.

Because each time there is a failure, the software is debugged, the error is detected and

corrected and therefore the same type of failure will not occur.

But then the improvement of reliability is not fixed some error fixes may cause large

improvement of reliability, some may cause less improvement in reliability and so on.

But typically as the software gets used, the errors are expressed in failures and these are

corrected the reliability keeps on improving for the software. Unlike hardware where the

reliability more or less remains constant, in software the reliability changes and typically

improves.

And therefore, becomes very difficult to give a reliability number to a software, because

if we give it today, then after a year the same number will not hold or may be after a few

days the same number will not hold. So, it becomes difficult to give a number reliability

number, reliability estimation value which can remain valid for sometime.

(Refer Slide Time: 19:22)

If we compare hardware and software reliability there are some issues which are very

different in hardware and software. The first thing is that the type of failure that occur in

hardware is very different very different from the failure that occurs in software. In

hardware the failures occur due to component wear and tear, if it is a automobile the

failures that typically occur are let us say the tyre punctured the tyre worn out replace the

tyre the battery become old, replace the battery and so on.

So, if we analyze hardware failures like a car or a mixer grinder, we find that the failure

is due to use of the system and some components, they wear and they break and the

failures are largely due to component breaking due to use or aging. But in software there

is no such thing as wear and tear, here this is a car the wheel has worn out punctured and

it can be replaced and the failure here is due to wear and tear. Whereas, in software there

is no wear and tear, this is one major difference between software failures and hardware

failures.

(Refer Slide Time: 21:36)

If it is a logic circuit a logic gate can become short circuited or open circuit and therefore

it may be 1 or 0 in all types of hardware. If there is a failure typically find out which

component is failing and replace that part and then the reliability is back to what it was.

A reliability estimation can be done for a hardware system, a number can be given and

there can be failures. But then on failure we replace a part and the system is back to the

previous reliability.

(Refer Slide Time: 22:30)

But software the failures are not due to wear and tear, the failures are due to bugs and

here the only way to correct the failure is to remove the bug. And once we change the

code and remove the bug the reliability changes, the system continuous to fail unless

changes are made to the design and code.

(Refer Slide Time: 23:03)

And once we change the design the reliability changes typically the reliability improves.

Now, the metrics that are used to measure hardware reliability, they are basically based

on observing the number of failures over a period of time long enough time and then

noting the number of failures and giving a reliability value. But for software these

metrics will not be very meaningful because, the failure types are very different here the

each failure results in reliability improvement in software. Whereas, the hardware the

reliability is maintained.

(Refer Slide Time: 23:59)

Whenever a software fails at test case there is a failure it is debugged the fault is rectified

and therefore the traditional notion of measuring reliability by observing the number of

failures per unit time does not appear to be meaningful in the software context.

(Refer Slide Time: 24:23)

In hardware system once there is a failure, the component is replaced and the reliability

is maintained. On the other hand, when software is repaired it is reliability may increase

in that we have removed a bug or it may decrease also, because one fix error fix may

create new bugs, let us say we fixed one bug. And let us say four five new bugs got

introduced because that error fix was not proper it fixed that bug, but then there were

some other bugs which resulted due to that bug fix.

(Refer Slide Time: 25:15)

So, the we can say that the goal of hardware reliability study is stability that is the

reliability is maintained the inter failure times remain constant, once the failure

conditions are removed.

On the other hand the goal of software reliability study is reliability growth that is

typically the inter failure times decreases the inter failure times decrease. I am sorry the

there is a reliability growth the inter failure times increases that is, it does not fail as

often because bugs are being removed. So, there is a reliability growth or inter failure

times increases.

So, the study of hardware reliability stability, reliability stability, whereas the goal of

software reliability is reliability growth the inter failure times increases. Whereas, in

hardware the inter failure times remain constant.

(Refer Slide Time: 26:24)

So, we can see behavior of hardware and software failure in a diagram called as the

bathtub curve. We are almost at the end of this lecture we will continue from this point in

the next lecture.

Thank you.

