
Software Project Management

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Lecture - 23

Project Estimation Techniques (Contd.)

Good morning, so now let us see another important type of cost estimation technique

another variation of COCOMO, we call it as COCOMO II. So, somewhere you will find

it as COCOMO roman letters II somewhere in some books they have written COCOMO

that digit as COCOMO 2 . So, that will that will be no problem.

(Refer Side Time: 00:37)

So, COCOMO II you see that since the time that COCOMO estimation model was

proposed in early 1980s; then the software development paradigm as well as the

characteristics of develop projects have undergone a large change. The present day

software projects are much larger in size and they reuse the existing software

components to develop new products that has also become pervasive.

So, similarly other new techniques such as reverse engineering, reengineering all those

things have use of automated tools etcetera case tools of come up. So, they need to be

addressed while estimating the cost. So, COCOMO the initial version of COCOMO that

has been extended, and that is known as the COCOMO II.

(Refer Side Time: 01:32)

For example, in case of component-based software development and service oriented

architectures they have also become popular. How we can estimate the effort or the cost

of or developing component based software or for developing SOA based applications,

new life cycle models such as your RAD, scrum or extreme programming etcetera.

They have come up also new development paradigms are being deployed for web-based

applications for component-based software. So, they need to be also taken into account

while estimating the effort and cost. During the 1900 1980s rarely any program was

interactive but now you see due to because graphical users were GUIs Graphical User

Interfaces were also almost non-existent. But now did you see any program without

having GUI it is of no use nobody will use that one.

So, how to taken to account the development of GUIs while estimating the effort, cost

etcetera that is also very much important.

(Refer Side Time: 02:37)

On the other hand, the present day software products are highly interactive, they support

elaborated graphical user interfaces, so they have to be considered while estimating the

effort and cost. Effort spent on developing the GUI part is often as much as the effort

spent on developing the actual functionality of the software, see almost 50 percent of the

effort is spent on the developing the GUI part, so that cannot be neglected.

So, since effort spent on developing the GUI part is often as much as effort spent on

developing the actual functionality of the software. So, we must have to taken to account

taken to consideration this developing GUI part while estimating the effort and cost.

(Refer Side Time: 03:20)

In order to make COCOMO suitable in this changed scenario where this modern

programming paradigms are there, GUI is there and this is say other technique reverse

engineering reuse etcetera there Boehm proposed COCOMO 2 in 1995. So, in as I have

already told you some books they are using this COCOMO II roman letter some are just

this COCOMO 2 in this digit, so please do not confuse.

COCOMO 2 provides three models to arrive at the increasingly accurate cost estimations

taking into account on those all those new things modern techniques. This can be used to

estimate the project cost at a different phases of the software product. As the project

progresses these models of they can be applied at different stages of the same project.

Actually here it is written three models, but now a days we have found recently this

recent material they are saying four model, I will see one more model that is added that

is this for a reuse. So, you can correct it as four models.

(Refer Side Time: 04:27)

So, now, let us see what are the main objectives of COCOMO II. The main objective of

COCOMO II is to develop a software cost and schedule estimation model which is tuned

to the life cycle practices of 1990’s and 2000’s. Another objective is to develop software

cost database and tool support capabilities for continuous model improvement. So, this

has been taken from the Cost Models for Future Software Life Cycle Processes:

COCOMO 2.0 in the published in the Annals of Software Engineering, 1995.

(Refer Side Time: 05:01)

COCOMO II models are, let us see the COCOMO II incorporates a range of sub-models,

it produces increasingly accurate estimates. So, here the estimates are more accurate than

the previous COCOMO models. The sub models in COCOMO II are I have already told

you there will be four sub-models, those are application composition model, early design

model, reuse model, and post-architecture model.

So, application composition model is used when the software is composed from the

existing parts. Some parts are there you are composing what these existing parts to

develop a new one, so when, so then you have to use application composition model. So,

this model is used when software is composed from existing parts.

Next one is early design model. So, this -sub model is used when the requirements are

available, but design has not yet started only requirements are known then you can go for

early design model; that is why the name early is used. Reuse model, so it is used to

compute the effort of integrating reusable components.

So, there are some component, some code, or some database they are already existing;

they can be reusable in another application then you can use reuse model. So, reuse

model is used to compute the effort of integrating some reusable components. And next

one is post-architectural model, this is used once the system architecture has been

designed and no information about the system is available.

So, when the system architecture has already been designed but more information about

the system and more information about the system is available then you can get use this

post-architecture model that is why the name is post, post- architecture Architecture is

already designed and more information is already available, that is why we are we have

to now develop the model and estimates the cost etcetera. So, since after this architecture

is prepared this is known as post-architecture model.

(Refer Side Time: 06:57)

So, this is what summarized here, application composition model is based on the number

of application points and it is used for systems developed using dynamic languages, data

bases, programming data base programming etcetera and early design model is based on

number of function points which is used for the initial effort estimation based on system

requirements and design options.

Reuse model is based on number of lines of a code that is reused or generated and it is

used for effort to integrate reusable components or automatically generated code. Post-

architecture model is based on numbers of lines of source code which are used and this is

used for development effort which is based on system design specification.

(Refer Side Time: 07:42)

So, in COCOMO 81, we are using the term DSI which stands for the Delivered Source

Instructions, but in COCOMO II, we are using term SLOC Source Lines of Code. So,

that we have which is, so this Delivered Source Instructions is very much similar to

SLOC, but there is a one difference.

The major difference is that, a single Source Line of Code it may be several physical

lines. For example, if there is a if-then-else statement, then this if-then-else statement

would be counted as only one source lines of code. But it may be counted as several

Delivered Source Instructions this is the important difference between DSI and SLOC.

(Refer Side Time: 08:28)

Now, let us see what is the core model how can effort, how can estimate the effort for or

by using COCOMO II for any model. The core model says that

pm = A× (size)
(sf)

×(em1) ×(em2) ×(em3)….

where pm is the effort in a person months, A is a constant whose value is 2.94, size is the

number of thousands of lines of code, sf is known as scale factor which is taken as the

exponent here and em this em i’s they are what; they are the effort multipliers already

effort multiplier we have seen in case of intermediate COCOMO.

(Refer Side Time: 09:12)

Now, let us see the first sub-model, that is a application composition model. I have

already told you this is applicable to prototyping projects and projects where there is

extensive use. So, this is applicable to prototyping projects, I hope you have already

known about prototype models. So, this is applicable to prototyping projects and projects

where is extensive scope of reuse. This is based on the standard estimates of developer

productivity in terms of application points or object points.

So, this application composition model that is why the name is application. Application

composition model it is based on the standard estimates of the developer productivity in

terms of what; in terms of application points or object points per month. So, this what is

this application points we will see, the application points are normally computed using

the objects such as the number of screens, number of reports, number of modules or

components present in the your application.

Please do not confuse here this objects is nothing related to the object oriented

programming ok. Here objects maybe treated the examples of objects be screens, reports,

modules. So, the number of screens, number of reports, number of modules or

components etcetera they can be treated as the objects and by you have to count those

objects.

So, based on these objects you can compute the value for the application point or number

of application points. So, application composition model takes the case tools used into

account. So, now, let us see the formula for estimating effort using application

composition model.

So, the formula for computing for estimating effort using application composition model

is given by

PM = (NAP (1 - %reuse/100)) / PROD

where PM is the effort in terms of person-months, NAP stands for number of application

points which can be found out which can be computed by what using the different

objects such as numbers of screens, number of reports, numbers of modules etcetera and

the PROD is PROD stands for the productivity.

(Refer Side Time: 11:30)

So, this model is suitable for softwares built around Graphical User Interfaces and the

modern GUI builder tools. This model uses object points as a size metric. So, I have

already told you this model uses application points or object points as the what size

metric, this is a extension of these object point or application point these are extensions

of function points.

Here we have to count these object use or the object point or application point it is a

count of the screens, reports, and modules; this I have already told you. This is based on

counting the number of screens, number of reports, number of modules etcetera which

are weighted by a three-level factor, either they could be simple, medium, or difficult.

So, the application points or objects points they are size metrics and they are based on

counting the number of screens, reports, and modules which are weighted by a three-

level factor may be simple, medium, and difficult.

(Refer Side Time: 12:38)

So, now let us see quickly about application points. These are reused with languages

such as database programming languages, or scripting languages. Number of application

points is a weighted estimate of three things, I have already told here that these number

of application points they can be used or they can be found out by counting the number

of screens, reports, and modules weighted by a three-level factor.

(Refer Side Time: 13:14)

You can see that the number of application points is weighted estimate of three things,

what; the number of separate screens that are displayed, the number of reports that are

produced, and the number of modules.

So, let us see the first one, number of separate screens that are displayed. So, here simple

screens they are counted as 1 object point, moderately complex screens they are count as

2 and very complex screens they are counted as 3 object points.

Similarly, number of reports that are produced, how they are categorised or rated in the

scale of say 1, 2, 3 or I think something more than that. Here it is rated as the screens

are rated as in between 1, 2, 3. Let us see how the number of reports they can be rated;

number of report that are produced they can be rated as follows.

For simple reports count 2 object points, for moderately complex reports you count to 5,

and for reports which are likely to be very much difficult to produce for count 8 object

points. Similarly, number of modules in languages the number of modules how we can

count? So, the number of modules in languages such as Java or C plus plus etcetera that

must be developed to supplement the database programming code. Each of these

modules counts as 10 object points.

So, if you are using languages such as Java or C plus plus etcetera to develop or they

must be developed to supplement the database programming code then each of these

modules they counts as 10 object points.

(Refer Side Time: 14:44)

See in the this is a table showing the application-point productivity. So, the developer’s

experience and capability they are rated as like on a 5 point scale; very low, low,

nominal, high, very high. Similarly the ICASE maturity capability, it can be very low,

low, nominal, high, very high; these are the values of productivity.

That means if developer’s experience and capability is very low and maturity and

capability is very low; use a factor of 4. This is the number of, so here productivity is

counted as number of application points divided by month. Similarly if developer’s

experience and capability is low, maturity and capability is low; then the productivity is

counted as 7.

So, this have been what Boehm has already produced. These values have been has have

already been produced by conducting so many research works by taking different what

data.

(Refer Side Time: 15:39)

Now, let us see about The Scale Drivers, I have already showed you in the what in the

initial function there was a what factor called as this scale factor. Now, let us see how

this scale factor is defined. The scale drivers or the exponent parts are computed like this.

This is an important factor contributing to a project’s duration and cost. The scale drivers

they determine the exponent that has to be used in the Effort equation. Scale drivers are

replaced; they have replaced the development modes of COCOMO 81, see in COCOMO

81 we are having three development modes.

One for your organic, semidetached and embedded but in COCOMO II they have used

scale drivers and they have replaced all those three development modes of COCOMO

81. What are the possible 5 scale drivers used in COCOMO II; they are as follows.

precedentedness, development flexibility, architecture or risk resolution, team cohesion,

and process maturity.

(Refer Side Time: 16:52)

Then we will come to the next model, that early design model and the post-architecture

model. So, here effort is calculated as follows,

Effort = (Environment multipliers) *

where environment multipliers could be product, platform, people, and project factors;

size is what that normally that the basic size that is estimated and these here it takes into

account reuse and volatility effects, process scale factors are what, the constraints, risk

architecture, team, maturity factors etcetera.

The schedule can be calculated in early design and post-architecture model as follows,

where these are the process scale factors, constraints, risk architecture, team and maturity

factors.

(Refer Side Time: 17:50)

Now, let us see another approach COCOMO II scaling exponent approach. So, here the

nominal person-months is calculated as follows,

Nominal person-months = A*(size)
B

where B is computed as using this formula

B = 0.91 + 0.01 (scale factor ratings)

B value may range from 0.91 to 1.23, there are five scale factors; and six rating levels we

will see. The five scale factors are those things precedentedness, development flexibility,

architecture or risk resolution, team cohesion, and process maturity and the six ratings

we will; so what are these six; so, process maturity it is a derived from SEI CMM model

that Capability Maturity Model. These are the codes they are referred they will be

referred while doing these problems. So, now let us see what are the six rating levels for

these five scale factors.

(Refer Side Time: 18:48)

So, these are the six rating levels; like very low, low, nominal, high, very high, and extra

high. The scale factors are the codes we have used here like PREC, FLEX, RESL,

TEAM, PMAT etcetera. So, those are shown here these are the scale factors and they are

rated on what a 6 scale; 6 point scale and this PMAT, it is a weighted sum of 18 KPA

achievement levels in where in the CMM or yes, in the CMMI.

(Refer Side Time: 19:22)

Then we will see the next model that the reuse model. So, reuse costs normally reuse

cost consider overhead for assessing, selecting and assimilating component. So, even

small modifications they generate disproportional large costs, so they are also what taken

care prior.

This reuse model takes into account a black-box code that is reused without any change.

The code that has to be adapted to integrate it with new code. So, this reuse model takes

into account two things, the black-box code that is reused without change, and the code

that has to be adapted to integrate it with the new code.

(Refer Side Time: 20:12)

There are two versions for this reuse model; one is the black-box reuse model, the black-

box reuse model where code is not modified. An effort estimate is computed then. In

white-box reuse model the code is modified then you may estimate the effort. A size

estimate is equivalent to the number of lines of new source code is computed. This then

adjust the size estimate for the new code, this is happening in the reuse model.

(Refer Side Time: 20:46)

The reuse estimates are like this, we will two possibilities we will see. For the generated

or reused code. Person month means the effort in person month is

PM = (ASLOC * AT/100)/ATPROD

Here ASLOC is the number of lines of generated code, AT is the percentage of code

automatically change generated, ATPROD is the productivity of the engineers in

integrating this code and when the code has to be understood and integrated then the

formula changes. So, here ESLOC is equal to

ESLOC = ASLOC * (1-AT/100) * AAM.

Where ASLOC already we have taken earlier, AT also we have already taken earlier,

ASLOC means number of lines of generated code, AT is the percentage of code

automatically generated, they are as usual before they have used, and AAM this is a new

term here.

So, this is the adaptation adjustment multiplier which is computed from the cost of the

changing the reused code, the cost of understanding how to integrate the code and cost of

reuse during decision making. So, this how when the code has to be understood and

integrated you can compute this E estimated you can compute the what ESLOC.

(Refer Side Time: 22:18)

Now, we will see the last model that is post-architecture level. It uses the same formula

as the early design model, but with 17 rather than 7 associated multipliers. See in the

earlier one was that e or this earlier model sorry in this early design model actually there

are 7 associated multipliers.

In earlier design model 7 associated multipliers are were used, but in post-architecture

model 17 multipliers are used. The code size is estimated as follows, first the number of

lines of new code to be developed is found out, then estimate the equivalent number of

lines of new code which is computed using the reuse model earliers reuse model we have

already shown.

Then an estimate of the number of lines of the code that have to be modified according to

the requirements changes, whenever the requirement changes you may have to modify

some of the lines or some of the code. So, then an estimate of the number of lines of code

that have to be modified according to the requirements changes that has also to be

estimated.

(Refer Side Time: 23:32)

Now, let us see about quickly about the COCOMO II scale factors. I have already told

you there are five scale factors, this already we have seen earlier. So, these five factors

appear to be particularly sensitive to system size. So, precedentedness represent the

degree to which there are past examples that can be consulted already similar cases you

have already handled earlier. So, what is the degree to which these past action examples

can be consulted.

Development flexibility represents the degree of a flexibility that exist when

implementing the project. So, during the implementation of whether many constraints are

there or you are completely flexible you can take your decision, you can do these

implementation yourself with there are no constraints you are free. So, development

flexibility represents the degree of flexibility that exist when the when implement the

project.

Architecture risk resolution it says the degree of uncertainty about requirements. So,

these requirements are not clear cut to you, the requirements are very much uncertain

they are not certain. So, what is the degree of uncertainty about their requirements that is

represented by RESL and similar team cohesion among the team members, and process

maturity this could be assessed by the CMMI Capability Maturity Model Integration.

(Refer Side Time: 24:47)

So, these are the different factors for this what COCOMO II scale factors. So, when

these are the drivers, these are the 1, 2, 3, 5, 6 you see rated as 6 scale and these are the

values these have been given.

(Refer Side Time: 25:00)

Then now let us quickly take some examples for using of scale factor. For example, a

software development team is developing an application. It is very similar to previous

ones it has already developed. So already they have developed similar types of

application. So, now, you are developing a similar application right now.

It is a very precise software engineering document lays down very strict requirements ok,

a very precise software engineering document lays down very strict requirement. So, it is

say that precedent is very high is PREC is the precedent I think; yes, So, now precedent

is very high and for high value it is 1.24 perhaps high value it is precedent high value is

see very high is 1.24, so that you have used and similarly, it is say that flexibility is very

low that value is 5.07 you can see flexibility is low is very low it is 5.07 and the good

news is that requirements are unlikely to change requirements are it will not change, so

RESL is high with a score of 2.83. RESL you can see RESL here it is high it is 2.83. So,

RESL is 2.83 but the team is tightly knit.

So, team score is high, team see high is how much? High is 2.19. So, that we have shown

here 2.19, but processes but processes are very informal. So, PMAT is low and for

PMAT low value is 6.24; PMAT low is 6.24 now you can find out the scale factor.

(Refer Side Time: 26:41)

The scale the formula for scale factor sf is given like this,

sf = B + 0.01 × Σ scale factor values

that is equal to 0.91 plus 0.01 into what are the four values you have got here 1.24, 5.07,

2.83, 2.19 and 6.24. So, those values will be multiplied, so on simplification you will get

1.0857.

If a system contained suppose the system or if a system contained 10 kloc then estimate

would be how much, the basic estimate is what suppose the system contained 10 kloc.

So, the estimate would be how much? The obtained value of 2 point value 2.94 the value

of a into size is 10 to the power this, so the exponent factor is 1.0857 this. So, on

simplification you will get 35.8 person months. So, using exponentiation that means to

the power of it adds disproportionately more to the estimates for larger applications.

(Refer Side Time: 27:57)

These are the, so what besides these scale factors that we have already seen earlier five

scale factors. Effort multipliers they are also assessed. Followings are the effort

multipliers that you will using in COCOMO II like RCPX means product reliability and

complexity, RUSE means reuse required, PDIF platform difficulty, PERS personnel

capability, FCIL facilities available, SCED schedule pressure. So, these are the different

effort multipliers they are also to be assessed.

(Refer Side Time: 28:27)

Their values are given also in a how much; 7 scale perhaps; 1, 2, 3, 4, 5, 6, 7. Yes, the

values of the effort multipliers are given in 7 point scale you can use them.

(Refer Side Time: 28:39)

We will take one more example quickly.

A new project has to be developed in ok, a new project to be developed is similar in most

of the characteristics to those that an organization has been dealing for some time. Before

they have already developed similar type of project, except the followings; what are the

exceptions; the software to be produced is exceptionally complex and will be used in a

safety critical system.

Software will interface with a new operating system that is currently in beta status and to

deal with this the team allocated to the job are regarded as exceptionally good but do not

have a lot of experience on this type of software, we have to now estimate.

(Refer Side Time: 29:21)

So, here RCPX is very high so 1.91, PDIF is very high 1.81, PERS extra high 0.50, and

PREX is nominal 1.0. So, these values you can get from that table; all other factors are

nominal and suppose the estimate say estimate is 35.8 person month. For example,

suppose it is estimated as suppose the effort is estimated as 35.8 person months.

Then with these effort multipliers the revised estimate becomes how much; 35.8

multiplication of these multipliers, so this gives into 61.9 person months. So, in this way

you can use the effort multipliers and the scaling factors to revise to refine the initial

estimates using COCOMO II.

(Refer Side Time: 30:07)

So, another equation I have we have taken another what example, a project with all

nominal cost drivers and scale drivers would have an EAF. EAF we have already

discussed it earlier Effort Adjustment Factor of 1. 0 and exponent, E, is 1.0997. So, these

things they have already calculated EAF is calculated as 1.0 and exponent E is calculated

1.0999.

So, a project with all nominal cost drivers and scale drivers, for this project it is already

calculated EAF value is 1.0 and exponent values E is 1.0997. Assuming that the project

is projected to consist 8,000 source lines of code, then we have to estimate the effort. So,

effort will be COCOMO II estimates 28.9 person-months using the previous equations

ok, now we have to complete it.

So, how we can complete it? So, COCOMO II estimates the effort as 28.9 person-month.

COCOMO II estimates that the effort is of 28.9 person months of effort is required to

complete it, so now we can revise it. So, effort is equal to how much; that is value of

constraint is 2.94 into what into the EAF Effort Adjustment Factor that is 1 into what is

the source code, see what is this source code; 8,000 source lines.

So, this is, so in this way see how COCOMO II estimates this 28.9 it is shown here. For

this data that it is a project with all nominal cost drivers, EAF is 1, exponent value is

1.0997 and the source lines is 8,000. So that means, project size is 8,000 source line, we

have to estimate the effort using COCOMO II. So, that will be based on the simplest

formula a into what the EAF into source lines to the power of the exponent.

So, value of a is 2.90 and EAF is equal to 1.0, size is 8,000 source line means 8 kloc and

to the power of the exponent part, exponent part is 1.0997 put the values in this equation

you will get the effort in person-months. So, on solving we will get approximately 28.9

person-months. So, COCOMO II estimates roughly 28. 9 person-months will be required

as the effort for developing this project.

(Refer Side Time: 32:44)

So, finally, we have discussed the fundamentals of COCOMO II, explained the various

sub-models of COCOMO II, presented the COCOMO II scale factors and effort

multipliers, solved some examples on estimating effort and cost using COCOMO II

model.

(Refer Side Time: 32:59)

We have taken the references from these books.

Thank you very much.

