
Software Project Management

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Lecture – 20

Project Estimation Techniques. (Contd.)

Good afternoon. Now let us start in this section, in this lecture we will take up some of

the examples for this Albrecht a function point methods. We will take few examples so,

that you can better understand. We will take some more examples on this Albrecht

IFPUG function points then, we will take two more types of function points that is

Symons Mark II function point and the COSMIC function points.

(Refer Slide Time: 00:43)

So, we have already discussed this parametric models for size, last class I have told we

will use a we will see 4 types of this a estimations like IFPUG function points, Mark II

function points, COSMIC function points and COCOMO 81 and COCOMO II. Last

class already we have discussed IFPUG function points Now, we will see this Symons

Mark II function point and COSMIC function points, before going to that let us take one

or two more problems more examples on this IFPUG function points.

(Refer Slide Time: 01:17)

So, we will take up this example, but I hope that before going to this example the let me

again tell you the let us take up that this example. And here, we will see that how this

previous formula that we can use I have already told you last class, first we have to find

out the unadjusted function point, then we have to refine it by using the value adjustment

factor. So, this formula for unadjusted function point can be written as what? I have

already shown it in the last slides, this will be equal to summation of number of elements

of the given type maybe it is a input or output or a query, what is the number of elements

into the weight

The weight I have already given you for simple there can be three;3 the weights can be

divided into three categories depending on whether it is simple or medium or high. So,

that table Albrecht might that complexity classifiers the multipliers we have already

given you in the last class. And now, with this now let us take up this problem ok. So

now, let us take this one more example, this example say that consider a project with the

following functional units there are suppose in that project there are 50 user inputs, 40

user outputs, 35 user enquiries and 6 user files, 4 external interfaces.

So, now let us assume that all the complexity adjustment factors and weighting factors

they are average, everything is average. So, then the question is that compute the

function points for the project and then compute what will the size? Given that the

program needs 70 LOC per function point.

(Refer Slide Time: 03:29)

So now, let us go you can see that the inputs is equal to 50, outputs is equal to 40 and

queries is 35 and internal files you can see that number of internal files is 6 and 4 is the

external interfaces that 6 and this 4.

(Refer Slide Time: 03:38)

So, use these values in the given formula that already I have given you and then it will

give you this values of UFP. So, basically two things I am taking the possible number of

elements from each category input, output, inquiry then internal file and external

interfaces multiplied by the multiplier the weight, which is whether it will vary

depending on whether it is a simple or average or what high. In my previous problem I

have already told you that these are all what average. So, all the complexity adjustment

factors are average, as well as these weighting factors they are average, it will be much

more easy to compute.

So, now UFP is equal to state formula apply this you will get 628, then we have to find

out the, what value adjustment factor. Again that formula we have told you 0.65 plus

0.01 into TDI, where TDI is equal to Total Degree of Influence. And here 14 parameters

since, it is told that this is average please see I have already told you that these

complexity adjustment factors are average, as well as the weighting factors that mean the

GSC this General System Characteristics there, these are these are also average.

So, again for average since you have taking a scale from 0 to 5, again this is average will

coming 3 so, this will 1.07. So, the AFP will be the adjusted function points will be equal

to unadjusted function points into VAF. So, because why we are doing this? We want to

refine it. So, the you can get the adjustment function point by what multiplying the

unadjusted function point on the value adjustment factor. So, this is given to 672. So, this

is the adjusted function points.

So, now what is question again and the second part question is that find out the size of

the complete project, how you can compute the file find out the complete the size of the

complete project, you have to use this information. It said that the program needs 70

LOC per function point; that means, per function point that can be 70 lines of code. So,

what is the total number of lines of code; so, sorry what is the total number of FP

function point 672. So, the total size will be equal to the function points into LOC per

function points. So, 672 into 70, in this way, you will get that these total size of the

project in terms of LOC is coming to be 47040.

So, in this way for small projects you can easily use this formula find out the function

points and size. So, in the examination some this types of small what questions might be

asked and you have to find out the answer. So, let us take quickly another example in

these example a project you have to develop for that you have to find out the function

point for that project, this project has the following characteristics there are number of

user inputs is 30, number of user outputs is 60, number of user inquiries 24, number of

files is equal to 8 and number of external interface is 2.

So, and assume that all the complexity adjustment value are average and all the

weighting factors are average.

(Refer Slide Time: 07:09)

So, then you have to find out the number of function points, you can see UFP again

straight forward formula that I have given summation of the number of elements from

each type into weight, whole then take the overall summation you will get applying this

formula straight forward. You can see that there are 32 number of what input users and

we know, therefore, average case this what value is 4, it has already given these are

adjustment factors are average. So, the value will be what 32 into 4. Similarly output is

60, the average weight is 5 and the inquiries it is 24 number of inquiries are there you

can see, and this average value for inquiry is 4, unlike this you can compute there are the

8 numbers of what internal files and 2 number of external interfaces.

So, 8 into average value for the interfaces 10 and 2 numbers of external interfaces,

average value it is 7. So, find out this value it is coming 618 then, you have to compute

the value adjustment factor by using the formula 0.65 plus 0.01 into TDI and since, it is

given that is these are also the general system characteristics they are average so, again

14 into 3 so, that will 1.07. So, finally, the adjusted function point can be obtained by

multiplying the unadjusted function points and the value adjustment factor. So, this is

giving to be 661.26. So, the total number of adjusted function points or the adjusted

function point counts for this project will be equal given as 661.26.

So, suppose if for function point you have to write say 80 lines of code. So, what will the

size in terms of LOC? So, 661.26 and 80 so, this will give you roughly the size of the

proposed project. So, in this way you can use Albrecht function point method to find out

the, to estimate the size of a given project.

(Refer Slide Time: 09:07)

So, now, let us quickly say about these what function points Mark II this is also another

interesting approach to find out the function points. This was developed by Charles R

Symons, actually the details of each method is available in a book he has developed, he

has published a book on software sizing and estimating by Wiley and Sons in 1991,

which contains the details of his function points, that is function points Mark II.

It is builds on; it is actually it is on extension of this Albrecht function point. So, it is

build on work by Albrecht function point method, it is developed in parallel to IFPUG

FPs. So, simultaneously it was developed in parallel with the Albrecht IFPUG FPs. So, it

is a rather simple and more usable method.

(Refer Slide Time: 09:57)

So, how it works? So, for each transaction you have to count the data items input, the

data items output and the entity types accessed. So, these three parameters you have to

count and then you can find out the total function point for the whole project by using a

formula, which we will see in the next slide.

(Refer Slide Time: 10:20)

See how does it works, as I have already told you, you have to supply the input items as

well as you will see also three parameters are required I have told the number of input

output; the number of input items supplied to the process, the number of entities assessed

from this data store and the number of output items are produced.

So, in this way this function point Mark II this works this is a simpler method than this

Albrecht function point and it is widely used in UK. So, what is the final formula for

finding out the Mark II function point, the function count is given by the following

equation

FP count = Ni * 0.58 + Ne * 1.66 + No * 0.26

Where Ni Ne and No we have already defined earlier, Ni the data items input No is the

data items output and Na is the entity types associated or the sorry the entity types

accessed.

So, this value judge; the these constants are some weights 0.58, 1. 66 and 0.26, these are

weights. This Simpson ok; Symons he had found out these values of the constants by

performing experiments in his lab. So, directly he has utilized these values of the

constants along with these parameters Ni, Ne and No and he has developed this formula

to find out the function points, this is known as Symons Mark II function points this is

simpler than Albrecht function point.

(Refer Slide Time: 11:56)

Now, let us see about the whether these function points so far we have seen the Albrecht

function points and the Symons function points, can they be extended to real time

systems and embedded systems. See this Mark II and IFPUG function points, they were

mainly designed for information systems and hence they are not suitable for embedded

systems why? Because these two function points they are largely or heavily dominated

by the input and output operations, the most emphasis is given on the number of input

operations and the output operations. So, in order to overcome this problem so, cosmic

full function points they have been developed in order to overcome these problems, this a

cosmic full function points they attempt to extend the concept, this concept which

concept this the Mark II concept or IFPUG concept to embedded systems.

So, Now these concepts have been extended to handle embedded systems to apply on

embedded systems or real time systems. You know that in an embedded system it is

features like hidden and etcetera is not it. If in an embedded system it is features

normally will be hidden, because the software, the software’s user probably is not a

human being, it will be used by some hardware device or another software component.

(Refer Slide Time: 13:25)

In order to what overcome these problems COSMICS deals with this by decomposing

the system architecture into a hierarchy of software layers. And the embedded software

is seen as being in one of the or in a particular layer in the system. This layer where this

software is present this communicates with the other layers I mean, upper layers and the

below layers and also other components are the same level. The software component

which has to be sized, it can receive requests for services from layers above and it can

request services from those below it this is shown in the, in this figure.

(Refer Slide Time: 14:05)

So, the software component represents suppose here it may receive what messages from

higher layers. It may make a request for a service what from a lower layer and also it

may receive a what service from a what a lower layer it may service it may provide some

service to some higher layer.

Besides that this software component may communicate with the persistent storage, peer

component and other components present in the same layer. This is the layered software

and based on this concept this embedded systems work. So, since they Albrecht function

point and Symons function points they cannot handle this embedded systems that is why

this, because another what function point technology has been developed that is

COSMICS Now let us see how COSMICS does work.

(Refer Slide Time: 14:57)

So, now, as I have already told you that here the software component that has to be sized

can receive requests for services from layers above and it can requests services from

those below it. So, this identifies what will the boundary of the software component that

has to be assessed and thus the points at which it receives inputs and transmits outputs. It

inputs; here, the inputs and outputs are aggregated into data groups where each group

will bring together data items that relate to the same object of interest.

(Refer Slide Time: 15:37)

Let us see, what can these; what groups the data groups can move about in four ways as

follows and like one is entry another is exits, another is reads, another is writes. So, these

are the what, data groups these are the four ways in which the data groups can move

about. So, entries means movement of data into the software component that is under

consideration from a higher layer or a peer component. Exit means, movement of data

out of the software component that is under consideration. Read means, data movement

from persistent storage and writes means, data moment to persistent storage.

So, in this way before which the data groups can move and what we have to do that each

counts; so, each of the above each counts one COSMIC functional size unit and in short

we call as Cfsu. So, in this way the COSMIC function points can be a calculated in this.

So, the COSMIC function points can be computed, can be estimated for any embedded

system or real time system.

(Refer Slide Time: 16:43)

The overall full function point count, how it can be found out the overall full function

point, count can be derived by simply adding up the counts for each of the 4 types of data

moment, that we have seen in the last slide. These COSMIC FFPs they have been

incorporated into ISO standard. We have already seen that these LOCs etcetera they are

not included incorporated in any ISO standard, but this COSMIC FFPs they have been

incorporated into ISO standard.

(Refer Slide Time: 17:16)

Now, let us quickly say about the, what disadvantages of the cosmic FPs. It does not take

into account any processing of the data groups ok. So, it does not take; it does not

consider any processing of the data groups once they have been moved into the software

component. So, once they what data groups they have been moved into the software

component, this metric does not take care of this material, does not take into account any

processing of these data groups. Normally it is not recommended for use in systems

which involve complex mathematical algorithms. So, this is not recommended for this

system. So, these are important drawbacks of cosmic function points.

(Refer Slide Time: 18:00)

So, Now let us summarize what are the pros and cons of the function points. On the

positive side you can say that function point is language independent, we have already

seen LOC is a language dependent, but function points are language independent.

Understandable by the client because here no technical details are there, you just what

are the functionalities and they are associated things you are just analyzing. So, it can be

understandable by clients which are non technical people, it is a very simple modeling

technique, hard to fudge and the variable features they creep.

And on the flip side you will see that it is very much labor intensive that to compute the

what, function points, extensive training is required, inexperience may result in

inaccuracy. So, the; now the function points you have computed if you are quite

inexperienced, it may result in inaccurate number of function points, weighted to file

manipulation and the transactions, there may be errors which are introduced by single

person. So, multiple raters are advised. So, if you adjust giving only one person to

estimate this some their sometimes that errors may be introduced. So, you have to put a

multiple what raters to rate these what applications, they can find out the different

weights so, multiple raters are required.

It does not consider one of the major problem with function point is that it does not

consider algorithm complexity of a function. So, because you know that it rates that if

there are some functions every function is handled in scenario, but you know some of the

functions are more complex, you have to put more effort. some of the functions are very

straight forward straight forward functions. So, they require only what less effort or less

time. So, it does not consider algorithm complexity of function. So, iterates all the

functions similarly.

(Refer Slide Time: 19:53)

So, I have already told you that function point metric suffers from a major drawback;

that means, the size of a function is considered to be independent of it is complexity

which is not true, the complexity of the functions are different. In order to overcome this

problem, an extension to the function point metric is there which is known as feature

point metric. So, this feature point metric it takes into account and extra parameter it

considers an extra parameter that is known as algorithmic complexity.

(Refer Slide Time: 20:22)

So, this parameter algorithm complexity it ensures that the computed size using the

feature point metric, it reflects the following fact. What if the fact that the higher the

complexity of a function the greater the effort required to develop; it if they complexity

of function is high so, you have to put more effort to develop it. If the complexity of a

function is very less just like a small GUI kind of a function it remain require less effort.

Therefore, it should have larger size compared to a simpler function.

So, if a; what the function is having higher complexity it should have larger size as

compared to a simpler function. It should have larger function point and hence, it should

have larger size as compared to a simpler function.

(Refer Slide Time: 21:08)

So, finally, let us see what the relationship or how that is the relationship between

function points or SLOC or how a given a function point, how it can be converted to

SLOC? See, for different programming languages this conversion rate is different like

for C language 104 SLOC is there per 1 function point. So, 1 function point may contain

104 SLOC. Similarly for C plus plus the SLOC for function point is 53 and like this, you

can see it is highest in case of C and we can see that it is almost lowest in case of HTML

and visual basic it is 42 ok.

(Refer Slide Time: 21:54)

So, how you can still make your estimation more accurate, how can do accurate size

estimation. So, here 1 one thing you have to extra take that is the risk factors, because in

the previous things almost we have neglected the risks factors. So, in order to make your

size estimation more accurate, you have to take the risk factors and then you have to

multiply.

So, you will take the requirement then estimate the project size, then multiplied with the

project complexity adjustment factors, then multiplied with the risk factors. So, these two

points the we have already told you this is given where in the function point analysis, the

project size and the project complexity adjustment. This you can say the unadjusted

function points and these are the complexity factors by multiplying this you can get some

value and that will multiplied by the risk factor.

So, these two factors can be obtained from function point analysis, then by what under

these two factors from the definition and the project completion adjustment and risk

factors they are dependent. The situation you have to adjust the situation finally, you can

if you will use all those things then by taking the multiplication you can estimate what

are the cost the effort and you can perform the scheduling.

(Refer Slide Time: 23:14)

Finally, let us quickly say about the object points. See do not confuse objects points, they

have nothing to do with the object oriented programming. Here only the number of

object points is estimated; the number of object points is estimated based on three

factors. First the number of separate screens they are displayed, then the number of

reports that are produced and the number of modules they are present in the code. By

taking into account, then by using some formula you can find out the object points.

These object points are normally are the; they are usually simpler to estimate and they

take into account the graphical user interfaces. So, this is a little bit fundamental about

object points.

(Refer Slide Time: 23:57)

So, finally, we have seen that we have solved two more problems on Albrecht IFPUG

function points, then we have discussed the Symons Mark II function points and the

cosmic function points. We have seen that how cosmic point it is already included in

this, what ISO standards also we have discussed what the concept of feature point

because we have seen that function point has one important a drawback. That it does not

take into account to the algorithmic complexity if two different functions are there.

It treats them as equally, but in fact, the two function those are there one might be very

highly complex, another might be very less complex. So, which one is highly complex

we have to put more effort and which one is less complex we have to put less effort. So,

these what complexity is not taken into account by function points; so, that is why

function point has been extended to in consider this complexity, it has another parameter

called as algorithmic complexity.

So, this algorithm complexity takes into account that if the complexity of a function is

more, more effort should be given if the complexity of a function is less. So, less effort

has to be given. So, if the complexity of a function is more; obviously, it should contain

it should produce or it should have more number of function points and hence, the size

will be more. And if the function is having less complexity, then it should have less

function points and hence less size. Also we have discussed little bit a of the object

points which takes an account or three factors that or three parameters ok, object points it

takes into three; it is based on three parameters that also we have discussed.

So, these are the things that we have discussed on today. So, in the next class we will see

and that COCOMO model.

(Refer Slide Time: 26:03)

We have taken from these books, the reference mainly what it is both of the books we

have used for this topics and finally, we stop here.

Thank you very much.

