

Software Project Management

Prof. Durga Prasad Mohapatra

Department of Computer Science and Engineering

National Institute of Technology, Rourkela

Lecture – 19

Project Estimation Techniques (Contd.)

(Refer Slide Time: 00:23)

Good afternoon. Now, let us start the other Project Estimation Techniques. We will

mainly a start about the parametric models, especially the Albrecht IFPUG function point

model.

(Refer Slide Time: 00:32)

So, let us see what is a parametric model, and then we will see the parametric model for

size. So, one of the important example for parametric model for size is function points.

Function points, where normally used to estimate the lines of code, rather than effort.

Say effort directly cannot be estimated from function point, first we have to estimate the

lines of code and by using the lines of code then we can estimate the effort using this

function points. So, this model works like this. It takes the number of file types and the

number of input and output transaction types are the input, and then it processes

something and then it will produce the system size as the output.

(Refer Slide Time: 01:19)

See we have seen there are many drawbacks of the LOC model that we have seen

yesterday. So, this function point approach, we will try to resolve some of the issues

though they are though they are appeared in case of these LOC. Now, let us see what are

the different parametric models for size. So, first one we will see that Albrecht IFPUG

function points, then we will discuss Symons Mark II function points, then COSMIC

function points, and then COCOMO81 and COCOMO II. So, out of all those parametric

models, today we will discuss right now in this class Albrecht IFPUG function point.

(Refer Slide Time: 02:02)

Now, let us see how does it work; so what are the purpose, what are the benefits and

what are the extent of use. So, IFPUG it stands for International Function Points Users

Group. So, the basic purpose of this group was to promote and encourage use of function

points, because we have already seen LOC has several drawbacks. To another objective

of this group is to develop consistent and accurate counting guidelines.

Several benefits are there which can be obtained from IFPUG. So, like the benefits will

be networking with the other counters, so you can make networking with the other

counters. Similarly, IFPUG counting practices manuals are also available, they it a

supports research projects, hotline, news papers, certification or some of the other

benefits of this IFPUG. The extent of use is like is the member companies they include

almost all industries industry sectors. Over 1200 members are there from across from 30

countries in this group.

(Refer Slide Time: 03:11)

Actually this Albrecht IFPUG function point it was coined by Albrecht’s. So, while

Albrecht was working at IBM he found that there is a need of measuring the relative

productivity of different programming languages, so he was using different programming

languages; he observed that there is a pressing need to measure the relative productivity

of different programming languages. So, he also needed some way of measuring the size

of an application without counting the lines of code, because the counting lines of code

has several drawbacks.

So, he has identified five parameters for performing the function point analysis let us see.

And he has counted the occurrence of each type of functionality in order to get an

indication of the size of an information system. So, in order to estimate the size of an

information system, he has counted he has first identify five parameters and counted the

occurrences of each type of functionality.

Let us see and basically yesterday we have last class we have discussed about these, the

different project estimation techniques such as top-down approach, bottom-up approach,

etcetera. So, this Albrecht IFPUG function point analysis is based on a top-down

approach.

(Refer Slide Time: 04:31)

Now, let us see why IFPUG thinks that one should not use LOC rather this would use

function point. We have already seen the drawbacks of LOC in the last class, till then let

us quickly revise what we have seen earlier are the drawbacks of LOC. We know that

lines of code it tend to reward profligate design and penalize concise design; so if your

design is concise, then it will penalize you.

And there is no industry standard ISO or otherwise for lines of code, so that is another

drawback we will see how function point is influenced somewhere else ISO standards.

And lines of code we know that it cannot be used for normalizing across different

platforms or different languages or by different organizations. Some 4GL they do not

have at all the use of these lines of code. So, then lines of code will made might will not

be what suitable for those languages, also lines of code it can be misleading. So, these

are some of the reasons why one should not use LOC rather than he should try for a

better major such as a function point.

(Refer Slide Time: 05:37)

How do function points over come the LOC problems, number one the function points

are independent of the language, we have already seen that LOC is somehow language

dependent platform dependent, but function points that independent of languages,

independents of tools or independent of methodologies those are used for

implementation. Then function points they can also be estimated early in analysis and

design, we have seen that LOC by LOC approach cannot be used in the earliest stages of

analysis design such as requirement analysis, specification and design whereas, function

point can be used to estimate the what size in early stages of software development such

as analysis and design.

So, since function points are based on the users external view of the system you will see

that even if any layman non-technical users of the software, they can also have better

understanding of what function points are measuring ok. So, this function points they are

based on what the users external behave, the user’s perspective, so that is why the non-

technical users of the software or the projects they can also better understand what this

function points are doing or their measuring.

(Refer Slide Time: 06:47)

Now, let us see what are the objectives of function point counting. It measures

functionality that the user requests and receives. So, it will basically measure the

functionality that the user request and the user receives. Similarly, it measures the

software development and maintenance independently of technology used for

implementation, this we have already told you that it independent of any technology

used, so that is why it can measure the software development and the maintenance

activities efforts.

So, it is very simple enough to minimize the overhead of the measurement process. So,

by using function point you can minimize the overhead of the measurement process. And

similarly, another objective is it act has a consistent measure among various projects and

organizations. So, it acts has a consistent measure among different projects and

organizations.

(Refer Slide Time: 07:41)

Then why should we use count function points, when should you count the function

points? So, as I have already told you that you can use this thing not only coding, but

before the coding starts may be requirement analysis phase and design, so that is why I

saying it can be what a used in the early phases of software development and vary often

it can be used. So, you see that the sooner you can quantify what a project is delivering,

the sooner it is control it will under better control, you can monitor it.

Under IFPUG 4.1, there are several rules and guidelines; these rules and guidelines make

it possible to count the function points once the requirements have been fixed. So, once

the requirements have been frozen, then you can easily a count the function points by

using the rules and guidelines provided in IFPUG 4.1.

The estimate of size in function points can be refined continuously throughout the

development cycle, please see it is not just estimated only once. So, you first you have to

make an initial estimate, then the estimates they can be refined continuously or you get

different information updated information throughout the development lifecycle.

The function points please remember that there should be recounted throughout the

development process. They can be refined throughout the development process, it hence

it can measure the scope or creep and the breakage.

(Refer Slide Time: 09:10)

Let us see what are the steps involved in the function point computation. So, first you

have to identify in the first step you have to identify, the counting scope and application

boundary what is this scope of the counting and what is the application boundary first

that has to be identified. Then you have to count two things, you have to count the data

functions as well as you have to count the transactional functions. Here in data functions,

like input, output those input data, output data, etcetera you have to count; and in count

transactional functions what are the mainly file transactions, etcetera or the interfaces

that you have to count.

Then you have to determine the function point and this is now unadjusted, you have not

refined anything else. So, we this is the first time we are getting we, we call it as

unadjusted function point. So, by using the what count data functions and count

transaction functions, you can determine the unadjusted function point count. And then

you have to calculate, because I have already told you that you may you have to refine

the function points.

So, how this can be refined by using a factor called as value adjustment factor, there is a

formula for finding this I will tell after few minutes. So, then we have to determine the

value adjustment factor. Now, this unadjusted function point and this what adjust value

adjust factor, they will be multiplied to give you the adjusted function point count. So,

this is how the function point computation steps they follow.

(Refer Slide Time: 10:44)

Let us see what are the key components of function point analysis, there are five key

components or external use types they are identified in function point analysis that the

external inputs, external outputs, external inquiries, logical internal files and external

interface files. So, these are the basic five components they will be used in the function

point analysis. They are also known as in Albrecht terminology, they are also known as

external user types.

(Refer Slide Time: 11:11)

Now, let us see we will define so five components I have told, let us quickly define

although there be or their usual meanings. So, external input in sort we called as EI, they

represent the transactions which update the internal computer files. So, which will update

the internal computer files; so, these operations these functions are known as external

input types. And external output types, here these are the transactions which extract and

display the data from internal computer files from the internal computer files what will

do, so the transaction which will extract the information, so basically these are output

types. And generally involves creating different reports of course, if you are where

creating report this will be an output type of what function.

And next one is external enquiry types. So, here the user initiated actions which provide

information, but do not update the computer files. So, you can see that in the external

input type the transactions they update the computer files, but this is just inquiry and

inquiry no updation will be there, only the user initiated the transactions which provide

only the information, but do not update the computer files. Normally the user inputs what

some data that guides the system to the information the user needs ok. So, here in

external enquiry types the user will input some data which will guide the system to the

information, to which guides the system to the information that the user needs.

(Refer Slide Time: 12:58)

So, next one its logical interface or LIF files. So, this equates roughly to data store in a

system analysis design terms. So, those who have studies system analysis design terms,

you must have study some data stores. So, here this LIF this equates roughly, this is

equivalent to the what data stores. Created and so normally these types are created and

accessed by the target system. And external interface file types this represents or these

things represent, the data retrieved from a data store which is actually maintained by

another different application that is why it is known as external interface file types.

(Refer Slide Time: 13:40)

See these are the function point parameters that we have discussed five and basically

what we have discussed all those things have been summarized here; more explanation is

given you can see yourself.

(Refer Slide Time: 13:51)

Then let us see with some examples of the definitions we have given, as I have already

told you that external input it process the data that comes from outside the applications

boundary from somewhere. External input it is giving and it is a so for example that

some online entry and the external input is giving, and then what is there this transaction

what will happen, it will update the customer information and then the where the

customer information file, this file will be updated. So, here this external input it will

process the data that comes from the outside application from a boundary, it will update

the data.

(Refer Slide Time: 14:29)

And in the external output, it generates data that is sent outside the application boundary.

Here data is coming from outside application boundary in external input, but in external

output the data is sent outside the application boundary. Please, you see here that say this

is the customer inform information file and then there is a process what categories

customer info, this sends the information like the category summery to the outside to the

end user which is an external output, so that is why these an example of external output.

(Refer Slide Time: 15:00)

What is about an inquiry? So, on external enquiry is an output that results in data

retrieval. The results contains no derive data. So, here you cannot what update anything

else only that produces what some data it results in some data retrieval. So, here and this

result cannot contain any derived the data.

So, here the end user asking some query inquiry and like what this inquiry might be what

get the details of the customer information, then these are the easy process display

customer info. This is getting the data from the customer info file and after getting data it

is passing to the end user, so that is why it is an example of external enquiry.

(Refer Slide Time: 15:43)

Next is a what definition of what internal logic file. So, an internal logic file is a user-

identifiable group of logically related data. So, basically this is a what group of logically

related data that is maintained where, within the boundary of the application; not external

please remember this is not external, this is maintained within the boundary of the

application, like this you have see.

The end user what send some customer info, then this process update customer info it is

receives that information and accordingly it updates the customer info where in the

customer info file. So, customer info file will be treated an internal logical file.

(Refer Slide Time: 16:23)

And last one is the external interface file. So, this is a user-identifiable group of data

which are reference by the application. So, basically this is a group of data which are

referenced by the application, but it is maintained within the boundary of another

application; it is not internal it is maintained within the boundary of another application

that is why the name is external interface file.

We have already seen in internal what is happening this is within the boundary of the

application that is why this is internal logical file, but here you can see this file its

outside the boundary so ok, so that is why this is maintained within the boundary of

another application. This is outside the boundary of this present application it is

somewhere outside that is why the name is external interface file. For example, here of

the end user update something like validate zip code and zip code in stores somewhere

else zip code table. So, for validation the message has to go here and come here, and then

it will update the customer info file. So, here zip code table represents on external

interface file.

(Refer Slide Time: 17:29)

Now, let us quickly take a small example we want to place a purchase order and the

input data items are like date, supplier, number, product code, quantity required, date

required, etcetera. Output data items are like purchase number; this will be generated by

the system. Entities referenced are these types are entities are referred like product,

purchase order, supplier, purchase order item, etcetera. Now, we want to estimate the

size of the system, let us see how can do it.

(Refer Slide Time: 17:58)

So, for calculating the system size you are supposed to do this things what you do, for

each function count first find the number of input data items that is n i, then the number

of output data items that is n o, then the number of entities which are rate or updated that

is n e. And then after finding out the function count for all, after finding out the function

count after finding out these for each function count, then you are these for the whole

system. Then these are to be added, this will give you the number of input data items N i

for the whole system, number of output data items N o for the whole system and number

of entities read or updated that is N e for the whole system.

(Refer Slide Time: 18:42)

If you will take a small example, this is what a sample example where these are the

requirements ok. So, for these are the functionalities for these requirements are

functionalities. So, for A 1, 10 inputs are there; for A 1, 2 outputs are there and for A 2

entity accesses is 4. Like this for there are 12 requirements find out the inputs, for all 12

requirements find out the outputs, for all the what 12 requirements then found out the

entity accessed the counts, for all the entity accessed.

Then what you do, these are all small ends, these are these are all we can see this for

each count for each function count we represent with small n and for the whole system it

will be depended with capital N. So, you can see the capital N i will be just summation

of these counts that is 120; and similarly, the number of outputs of for the whole system

that is N o is equal to 120; similarly for the number of entities accessed for the whole

system will be the sum of this counts which is equal to 60. So, in this way we can find

out the what if inputs, outputs, entity accessed which roughly what correspond to the size

of the whole application in this manner.

(Refer Slide Time: 20:02)

Now, what will see, that Albrecht has the proposed a formula for finding out the function

point for different applications.

So, he has actually categorized the external user types into different categories such as

some of the external user types might be of low complex, some of them are medium

complex and some of them are high complex. Accordingly he has proposed some

weights, some multipliers for these external user types depending upon the complexity.

So, like for the for external input if it is a low complex or low complex application, it is

3; for a medium complex application EI is equal to 4; for high complex application the

value of EI is equal to 6. So, in this way he has proposed somewhere some multiplies for

the what different external user types, this is known as Albrecht, these are known as

Albrecht complexity multipliers, those multipliers I will use them in this calculation of

function points.

UFP = (number of elements of given type)  (weight)

(Refer Slide Time: 21:02)

Let us quickly take a small example, how you can find out the there is a you want to

develop a software for spell-checking. The spell-checker accepts as input what a

document file and an optional personal directory file. Then the spell checker, it lists all

words which are not content in either of these files. The user can query the number of

words processed the user can query the number of words processed and the number of

spelling errors which are found at any stage during the processing.

(Refer Slide Time: 21:36)

So, if you can draw if you have I hope you have known data flow diagram, so you can

easily draw the data flow diagram or the context diagram for this, where you can see that

user can send what this information to the process. And, the process can what do some

processing, this spell checker can do some processing and give this outputs and now we

want to find out the function point.

(Refer Slide Time: 22:01)

How can be done, see if you look at this you can see that the 2 inputs; what are the 2

inputs, if you will see the program the example 2 inputs, on a document file and an

optional personal directory. So, these are two inputs I have shown that are 2 user inputs

document filename and personal dictionary name and they can be what rated as average

complex or medium complex. There are 3 user outputs, what are they error or report,

word count and misspelled error count, also they will treated as average complexity or

medium complexity.

The user request two things there will be 2 queries, what are the 2 queries; number of a

processed words and number of spelling errors, they can be made as queries. So, they

may be treated as average, so that are 2 user queries or 2 user request. There is 1 internal

logical file that is the dictionary, where all those what is have stored and there is a 2

external files, what are they; the document file as well as the personal directory, personal

dictionary average. See those things have so described in the problem as well as they

have been also represented in the diagram as the input and output that you can look at the

diagram and see yourself.

Now, our objective is to find out the function point. So, this Albrecht has proposed a

formula and according to this formula, let us see where this formula must be there, this

formula ok. So, now the formula says like that the

UFP= # inputs*4+ # outputs*5+ # inquiries*4+ # files*10+ # interfaces*7

So, there is a formula you can use. So, the UFP can be computed as like this that

summation of this parameter whatever you are taking and into it will be the weight. So,

you have to take up this parameter and then the weight there will be multiplied, there will

be ‘into’ here and take the summation. So, if we can see that here, the UFP is computed

as the here what are the parameters, the parameters are ok. So, now we can see that the

number of UFP is equal to number of inputs into 4 plus number of outputs into 5 plus

number of inquiries into 4 plus number of files into 10 plus number of interfaces into 7.

So, then what is happening, so here basically the these are the weights; 4, 5 and 4, 10

these are the weights, the weights are chosen for an average project, because see all the

parameters are type average. So, these are average values has been taken and then you

multiply them and they take the summation. So, finally you are you are observing that

UFP is coming to be 55. So, this is the unadjusted function point. So, after this

unadjusted function point we have to this is the initial value, then there can be what then

that can be refined.

(Refer Slide Time: 25:53)

Now, let us see how this can be refined. So, Albrecht had proposed a 14 general system

characteristics these are evaluated and used to compute a value adjustment factor known

as VAF or sometimes it is known as TCF technically Technical Complexity Factors. So,

these are the general system characteristics data come like data communication,

distributed data processing, etcetera. And the final calculation is based on what finding

out the unadjusted function point which we have already used this formula, then this

what value adjustment factor.

(Refer Slide Time: 26:32)

So, there is a formula for computing the value adjustment factor, this is like given like

this

VAF = (TDI * 0.01) + 0.65

So, what is TDI, let us say.

(Refer Slide Time: 26:41)

So, so what is happened that these are 14 parameters they are given some values within

the range 0 to 5, these values are known as degree of influence or DI; where 0 represent

not present or no influence one is incidental influence and 5 with this strong influence of

the parameter.

So, here they how to process calculate the value of the VAF that is written here that we

have to evaluate each of the 14 general system characteristics on the scale of 0 to 5 in

order to determine the value of a DI, which is known as degree of influence. So, then we

have to add all the degree of influence for all the 14 general systems, this will give raise

to the TDI that is total degree of influence.

Then we have to insert the value of TDI in these formula to find out the value of VAF

that the value adjustment factor or complexity factor why, we want to refine the value of

the function point. So, VAF is equal to TDI into 0.01 plus 0.65, this Albrecht has already

found out from his research. So, this VAF or this TCF, it expresses the overall impact of

the corresponding parameter on the development effort.

(Refer Slide Time: 27:50)

So, this is the procedure to do. Now, let us see that same example will continue where

there are suppose 14 general system characteristics. And let us assume that these values

almost average, it is 3, because I have already told you the value lie in between 0 to 5,

suppose this is 3 then how you can compute. So, VAF formula I have already told you

here that TDI and how TDI will be computed; if for 1, the value is at the degree of

influence is 3 and 14 parameters so 3 into 14, so that is 42. So, value adjustment factor

will be 42 into how much zero point see TDI into 0.01. So, this will be 42 into 0.01 plus

a constant 0.65 like this it is 1.07.

So, finally the adjusted function point it can be calculated as follows,

FP=UFP* VAF

you have to multiply the unadjusted function point into with the value adjustment factor,

so after these you will get that 58.85. So, this is the unadjusted function point for the

given what spell-checker application that is the adjusted function point. Now, let us take

an example here I have chosen all the what degree of influence for every what that

parameter, it is of what 3 uniform.

(Refer Slide Time: 29:10)

But if it is difficult different like the 14 general system characteristics with the different

DIs, like for something 3, something 0, something 4 and something 5; so it is ranging in

between it is ranging in between 0 to 5. So, then the total degree of influence is the

summation of these, this is 36.

(Refer Slide Time: 29:26)

And you can say that so now, this value adjustment factor will be how much 36 will put

in the above formula that will give raise to 1.01 and once the VAF is calculated, you can

easily calculate the adjusted function of the adjusted function point will be equal to

multiplication of UFP – Unadjusted Function Point into the value adjustment factor, so

this is coming to the 55.55. So, in this you have taken what are the two cases where the

values of GSC – General System Characteristics are same, in another case the value of

the general system characteristics are different, how to find out the adjusted function

points ok.

(Refer Slide Time: 30:02)

So, there is another example is a very small example, this you can see yourself.

(Refer Slide Time: 30:07)

Where and reading that example you can find out, how many inputs are there and here I

have taken there are two inputs; one is of medium, another is high. And there is a one

what output that is of medium complexity, one internal file that is medium complexity,

and one simple interface file that is simple, so add all those things. So, will get total UFP

is equal to how much 30 FPs.

So, if a previous projects, if you have already develops similar kind of projects and the if

the previous projects delivered 5 function points for a day, then you can easily calculate

that you have to take 6 days 35 by 30 by 5, so that 6 days you have to take in order to

develop this project.

(Refer Slide Time: 30:52)

So, other exercises are given, so that you can practice.

(Refer Slide Time: 30:56)

For each exercise find out what is the unadjusted function point, then what are the what

VAFs, multiply all those things.

(Refer Slide Time: 31:02)

(Refer Slide Time: 31:06)

Then you can get the total function point using Albrecht, what function point method.

So, finally, here we have discussed Albrecht IFPUG function point analysis; we have

taken some examples related this. And in the next class also, I will take few more

examples for this, then we have to discuss this steps to compute the FP count. Then we

have presented also the function point different parameters, parameters I have told and

then we have explained the IFPUG function point counting with some suitable examples.

(Refer Slide Time: 31:35)

We have taken mainly it is a concepts on these two books; we can have along to look

into this.

Thank you very much.

