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Lecture – 49 

Physical Unclonable Functions 
 

In this lecture, we shall be talking about Physical Unclonable Function or PUF. We 

mentioned earlier that this physical unclonable function plays a big role in designing 

systems in terms of hardwares such that it becomes secure. Means, in other words with 

respect to hardware security this physical unclonable function or PUF can be used to 

design secure systems in a relatively easier way. So, let us see what this PUF is actually 

all about. 

(Refer Slide Time: 00:52) 

 

Now, in this lecture we shall first be talking about the basic concepts of physical 

unclonable function, then some applications of PUF and how they can be implemented 

ok. 
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Talking about what is a physical unclonable function; you can say it is some kind of a 

fingerprint of some device. Now, how do you define a fingerprint? Suppose, as a human 

being my fingerprint is something which is supposed to identify me; my fingerprint is 

supposed to be unique. So, in the same way whenever I design some hardware circuit 

and IC chip, the idea is there must be something which should be unique to that IC chip. 

It can be acting as a some kind of a fingerprint of that particular device. So, PUF is 

something like that; the concept is that. It is defined as the fingerprint of some kind of a 

device. 

Suppose, I have this kind of a PUF and we define something called challenge response 

mechanism. The way a PUF box is that suppose I can have a chip; I can have a chip and 

inside my chip the PUF can be sitting in between; this can be my PUF ok. Now, the idea 

is that when we use a PUF, there is a concept of a challenge and response pair or 

challenge response mechanism that comes into the picture. The idea is, suppose, I feed a 

challenge C; this is some data I feed as input; I call it as a challenge and I get an output 

which I call it as a response R. This C and R is referred to as the challenge response pair 

ok. 

So, this PUF defines a mapping between this challenge and this response and the idea is 

that this PUF is something for which the challenge response pair is unique. If I design 

another IC chip where may be the same kind of a PUF I am building, but for that PUF 



the challenge response properties will be different. So, challenge response will be 

something like a fingerprint of that particular device ok. So, this is something which you 

define as unclonable, it cannot be copied, it cannot be cloned and instance specific. It is 

specific to that particular chip. 

The way it is implemented this depends on manufacturing process variations. When 

multiple chips are fabricated there will always be small variations here and there. No two 

things can be exactly identical ok. So, that process variations, device variations that is 

what is exploited in the design of this PUF ok. 
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Some of the desirable properties of PUF are mentioned here. These are quite obvious. 

First is it should be something which should not be too difficult to evaluate in terms of 

the challenges response. Suppose, I give a challenge x, the response y should be easy to 

calculate, easy to compute ok. It should be easy to evaluate. 

Secondly, for a particular device, the challenge response property should be unique. The 

value of PUF(x) for a particular x will contain some information about the identity of 

the, physical identity; that means, if I talk about a particular chip there is a PUF here, 

whatever x I feed here, the PUF of x if I call it y. So, whatever value I get y, this should 

uniquely identify this IC chip this should provide as the identity. 



And, in the previous slide we have already mentioned there is a concept of unclonable; 

means given one PUF implement; that means, one chip, I have a PUF inside; if I have 

another copy of the same chip; there is also the same kind of a PUF, but the two PUFs 

will never be identical. One PUF let us call it ���, other PUF call it as ���′. They will 

always be unequal means for some given challenge, if you compute the response for the 

first one, compute the response for the second one, they will not be equal. 

So, it is hard to construct two PUFs which are not the same such that for the same value 

of x their response will be the same; their response will be different that is the idea. And, 

it is a one way function that from y, from x you should get y, but given y you should not 

be able to get back x. It is quite similar to hash function calculations, the reverse 

mapping should be difficult ok. 
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Let us take a simple example of an S-R latch. I will just try to explain what this 

fabrication dependent or device dependent variations mean. Well, if you recall for those 

of you know how an S-R flip flop works; this is a single bit storage which store 1 bit of 

information, ok. There is one input “in” that same input is fed to this S and R let us say. 

This S and R are two different inputs; let us assume that the same input value “in” is fed 

to both S and R. 

Now, let us say I apply 1 to input. If I apply a 1 here then the output of this NOT gates 

will be 0; this will be 0; these are NAND gates. So, one input 0 means the outputs will be 



1; both the outputs will be 1; both y and y prime will be 1 ok. Now, let us say this in was 

1; now I make it 0; I change it to 0. So, at this point in time both y and y prime were 1 

and 1. 

So, as soon as I make it 0 this outputs of the NOT gates will both become 1, this will 

become 1; this will also become 1. Now, here something happens; you see these are two 

gates. Now, two gates are fabricated in the chip. The two gates can never be exactly 

identical. Suppose, this gate is a little faster; let us call it F; this gate is a little slower; let 

us call it S. This gate faster means when this is 1, so both the inputs are 1 and 1, 1 and 1 

NAND output is 0. So, this output will be changing to 0 first, because this gate is faster. 

This gate is slower, so, this output is still not 0. So, this will become 0 first and this 0 

will be fed back; 0 and 1 this will remain as 1; but if it were the other way round, then 

this would have become 0; this would have become 1. 

So, this output y whether it will finally become 1 or 0, it depends on the relative delays 

of the two gates which you cannot predict beforehand. So, here there is a source of 

randomness; it depends on fabrication ok. This is the basic idea behind which this kind 

of PUF design we are trying to build, fine. 
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Now, from theory to practice usually these PUFs today the most of the research papers if 

you see, people have tried to build this PUFs around field programmable gate arrays or 



FPGAs. Many security protocols and implementations are based on FPGAs and people 

have also implemented PUFs inside FPGAs. 

Now, the advantage of FPGAs is obvious; you can create a design and burn it on a FPGA 

in your lab, in-house. You can program it, you can change the design whenever you 

want. But, you should need to implement carefully when the implementation of a PUF is 

required, ok. See, for a particular implementation there may not be any non-determinism; 

like say you again look at that S-R flip flop, the same S and R; this kind of flip flop is 

there. 

Suppose, in an FPGA implementation I design it in such a way that these two gates are 

placed in two different places in the chip; let us say one gate is placed here and one gate 

is placed here, and these two interconnecting lines, their lengths may not be same; one 

may be like this; one may be like this. So, one interconnection will be longer which 

means its delay will be longer. So, if this delay is longer, so that longer path can be the 

slower of the two; the other path will be faster. 

So, it depends on the layout; the way you connect, place the two gates and connect them; 

that which gate effectively will be faster; which will be slower and whether the output 

finally in the example you took, whether it will be finally settling to 0 or to 1 right. So, 

this depends; you will have to understand that. 
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Now, if you look at a chip; here I am looking at the FPGA chip. So, these are the 

different grids. Let us assume that the NAND gate that I was talking about; that NAND 

gate I can potentially place in any of the grids; I can place it here; I can place it here; I 

can place it here; let us say I can place it here; I can place it here; I can place it here, so 

many places. Now, it depends where we are placing. Depending on that some of them if I 

set the input to 1 and then to 0, just in the previous example, some of them will be 

settling down to 0; some of them will be settling down to 1. 

So, accordingly what will be the final values of y’s that will depend on how you are 

interconnecting them? So, it does not depend on the circuit, but rather on how you are 

making the interconnection; where you are placing which gate. So, in FPGA particularly 

here I am not fabricating anything; you are mapping a design into a programmable 

fabric. So, where you are mapping, how are you interconnecting that will depend, that 

will determine what will be your final challenge/response pair of that PUF in terms of the 

S-R flip flop that we have just now talked about right. 

So, the difference in the routing delays of these paths will determine that whether the flip 

flop output will be settling to 0 or 1. So, and that will depend on which location you are 

placing the flip flop, the x, y coordinates right. 
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So, talking about the advantages of PUF, if you talk about PUF as a basic building block, 

you are using to design secure hardware, there are broadly two things – it reduces the 



cost of secure implementation; it also increases the security. Now, here I am showing 

two things. If there were no PUF, then trusted party embeds and tests secret keys in a 

secure non volatile memory; this is the typical thing which is done. Inside the chip some 

secret value is stored in a non-volatile memory that is used for encryption/decryption. 

There is some kind of a flash memory, EEPROM and advisory on attacker can physically 

extract through side channel attacks. But, if you have a PUF, then some properties of the 

device that can be used to generate the secret key and the key will never be stored 

anywhere; the key will never come out of the IC chip. Depending on intrinsic property of 

some delays inside the chip, the key value will be automatically generated. And, the key 

is automatically deleted after is used. It is not stored anywhere. This is the advantage. 
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There is another application of PUF where you want to identify; like I have fabricated or 

I have designed the device and someone has made a clone or a copy of my device; I want 

to find out which is the original and which is the copy. You see, for the authentic device 

which I had designed, I know what was my challenge/response properties. Let us say I 

have already created a table like that; this is the, for this challenge, this will be the 

response; for this challenge this will be the response. 

Now, if some other device is given to me which contains a very similar PUF, I can 

consult an same table, I can apply this challenges and see what the responses are coming 

and I can compare whether they are equal or not, same or not and if they are not same, 



we can reject the IC, saying that this is not the same device. In this way you can identify 

a unique device, ok. Sometimes it is required; you need to identify a particular copy of 

an IC. You can use this kind of PUF IC fingerprinting for doing that. 
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Now, there is another important application in public key cryptography. You can you 

PUF to generate public and private keys on chip. You need not have to rely on a trusted 

third party to generate the public/private key pair and deliver it to you through some 

mechanism; you can do it on chip. 

The idea is like this; suppose, you have a PUF; you have a PUF. So, whenever you apply 

some input to a PUF, the response can be considered to be a random number. Response 

is random; it depends on the intrinsic properties of the device. It varies from one device 

to another. So, it is truly random. So, that random can be used as the initial value of the 

seed of a key generation and this PUF is typically used in conjunction with some public 

key algorithms; typically in hardware we use elliptic curve cryptography or ECC. So, 

ECC and PUF are sometimes used hand in hand. They are used together. 

And, this with this ECC and PUF you generate a random seed through which the key 

generation model that can be inside the chip that can be generating the public key which 

can be distributed outside, but the private key will never leave the chip; it will remain 

inside. You are not storing anywhere and this private key can be generated online; you 

did not store it anywhere, ok. And, the public key also can be generated or endorsed 



anytime you want; you can again use that PUF to apply a particular challenge to get a 

response; the key generation module will be generating the same public key. 

So, the manufacture need not store any secret key value inside the chip; that will 

automatically generated by the PUF mechanism, stored and generated by the chip itself 

right. So, this is how it works and in terms of cryptography, it helps a lot. It saves a lot of 

time and effort to manage the key, to secure the key inside the chip all right fine. 

(Refer Slide Time: 18:14) 

 

Now, in terms of the practical design, how the PUFs are actually implemented? Well, we 

are interested in chips right. So, we are interested in silicon PUF circuits which are 

implemented in silicon or CMOS. As I had said the basic idea is that when you fabricate 

chips, there will be process variations; from one chip to the other there will be some 

variations. So, those variations are exploited here. 

But, with respect to design when circuit design is carried out, this process variation is a 

drawback. We try to make the variation as small as possible; but here the process 

variation is something which we are taking advantage of. We are trying to exploit the 

process variation and use it to our advantage right. So, this is quite useful for PUF design 

and a number of research papers and number of efforts are been carried out; various PUF 

designs have been explored. Some of them I am just briefly talking about. 



(Refer Slide Time: 19:27) 

 

This is a very common and popular design. This is called arbiter PUF. Schematically, it 

is shown like this. You see these boxes you can see, rectangular boxes; these are nothing 

but path swapping switch. What it is actually is like this. Suppose, there are two inputs, 

let us say a and b. There are two outputs; either this input will be coming out as it is or 

they will be interchanged, a will come here; b will come here and what will happen that 

will be dependent on a control signal. So, depending on this control signal whether it is 0 

or 1, either the inputs will be coming out straight or it will be exchanged right, ok. 

Now, here what is happening; you see at the input we are applying a pulse; let us say 0 to 

1 we are applying and this control signal combination, this is our challenge; we are 

applying some random bit pattern as a challenge, 0 1 1 0 1 0 1 1 or something. So, 

depending on that some random path is getting selected; some of them are going straight; 

some of them getting exchanged. So, the delays are different. So, when it reaches a final 

D flip flop the delay vary; that means, which inputs will reach first. 

Here you see the same signal was fed to both of the inputs; but when it reaches here the 

two inputs maybe different; maybe little delayed with respect to each other; because they 

are following two different paths. The two paths are not identical, ok. And, the response 

we are storing in a D flip flop; one we are using as data; other we are using as clock. So, 

whatever will be storing in the flip flop that will be something unpredictable; it can be 0 

or it can be 1. It depends on the relative delays of the flip flop; this is the basic principle 



behind arbiter PUF. There will not be one; there will be many such PUFs. So, the 

response will not be just one bit; there will be multi-bit response. There will be many 

such units placed in the chip in parallel; it will go on ok. 

So, the same thing is mentioned here; there are n two-ports switching stages, for an n-bit 

challenge size. So, this is actually � − 1, not n. This is 0 to ����. So, number of possible 

path, for each of them there will be two possible paths, 2	 × 	2 × 2 × 2…, it will be 2�. 

A particular challenge that we are feeding will be selecting a unique path and 

accumulated delay as I had said, is compared with the D flip flop which is the arbiter 

circuit which gives a 1-bit decision, 0 or 1. If there are multiple such arbiter circuits, it 

can give a k-bit decision, k-bit response. 
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Now, there is another kind of PUF called ring oscillator PUF. So, what is a ring oscillator 

PUF? See; first let us understand what is a ring oscillator. If we take a inverter, the 

output I connect to the input, this acts as an oscillator. If I apply 0 output will be 1, 1 is 

feedback. Again, this 1 will become 0, 0 is feedback; again, this 0 will become 1, 0 1 0 1 

0 1 this will go on. The same thing will happen if any odd number of inverters are 

connected like this, let us say 3 and I am connecting, same thing will happen; but the 

delay will be a little more; 0 1 0 1 0 1 like this it will go on oscillate ok. This is called 

ring oscillator. 



Now, here the idea is that we have a number of ring oscillators you see. You ignore this 

gates in the first stage; you see is NOT gates are there and this NAND gate is also 

considered as a NOT gate. So, there are three inverter let us say. There are a number of 

such ring oscillators in the circuit right. So, the output is feedback here. Now, if it is 

enabled if the enable line is 1, if you feed a 1 here; say a NAND gate with one of the 

input 1 is equivalent to a NOT gate. So, if enable is 1, this becomes a NOT gate; it is a 

ring oscillator; if the enable is 0, then the output will be a steady one, it will stop 

oscillating right. This is how it works. 

Now, the idea is that there are so many ring oscillators; they are all oscillating and 

oscillation means there will be some frequency of oscillation. So, what we do; using 

some challenge, we randomly select some ring oscillator. There will be several ring 

oscillator here; several ring oscillator here; let us say there are 2 to the power n. Just 

using an n bit challenge, we select two ring oscillators and their frequencies we measure 

in two counters. Then we compare whether the counter 1 is greater than counter 2 or not, 

which frequency is greater. This will be my final response, ok. 

Now, depending on which ring oscillator you choose, these frequencies are different. So, 

the response will also get different; that means, whether the frequency will be greater or 

less. This is how randomness is generated ok. This is how ring oscillator PUF works. 
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Then there is another kind of a PUF which is based on static random access memory, 

SRAM PUF. This is a typical diagram of a MOS based static random access memory 

cell, 1-bit storage. Now, the idea is that when you switch on power to a chip, suppose 

there is such a memory cell; initially the memory cell can start with an initial value of 0 

or a 1; but you do not know what. It will be either 0 or 1 depending on the manufacture 

which transit is faster, which one will be switching first; that way if the output will be 

either set to 0 or 1. 

So, if you have many such random access memory cells, depending on the 

manufacturing properties, they will be initialized to 0 or 1 randomly. This is the idea 

behind SRAM PUFs. The power-up initial values of SRAM cells are used as response 

and which cell you are selecting that is the cell address that will be the challenge. 

Randomly you select a cell, you see it is 0 or 1; randomly you select any another cell see 

it is 0 or 1 like that ok. 

So, for a particular manufactured chip that should be the same; because for a particular 

property of this transistor device, devices; the way they are manufactured their delays, 

their gains, so when you switch on the power, it will be either 0 or 1; it will be 

deterministic; but across two chips it may be different ok. But, this SRAM PUF is more 

easy for an ASIC design; for a chip for an ASIC chip. But, for FPGA implementation 

SRAM PUF is very difficult because in FPGA whenever you are initializing the power 

all SRAM cells are reset to 0 by default; they are cleared. So, you cannot use this PUF 

using SRAM for FPGAs ok. 
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So, to summarize, this PUFs is something which is very simple; do not need much 

hardware to implement. Nowadays this circuit which I have shown, they are fairly 

simple, not much. So, they are relatively very inexpensive and using PUF you can make 

the security protocols that you are implementing in your chip much stronger; that is the 

basic idea and if you do that the kind of hardware based attacks we have been talking 

about it becomes much more difficult to mount this kind of attacks; your device becomes 

more secure ok. 

So, with this we come to the end of this lecture, where we talked about PUF, physical 

unclonable function. In the next lecture, we shall be talking about Hardware Trojans 

which are also very much related to hardware security we mentioned earlier. We shall be 

seeing it in the next lecture. 

Thank you. 


