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We will continue our discussion on Projective Geometry. We have seen how points and lines

are represented in a two-dimensional  projective space.  We have seen that  a point in the

projective space can be represented by an additional dimension, because there is a implicit

three-dimensional representation involving the two-dimensional projective space.

So, in this case, any point that represents a particular element, i.e, a ray passing through the

origin connecting to that point, and every point in this space is being represented by this

element.  Similarly,  a line in the plane of projection which is  given by the corresponding

equation, say,  ax+by+c=0 which is also represented as an element of a projective space,

which is a different projective space representing a line. There also a point in that projective

space is representing a line and which is also representing an element that is a ray passing

through the origin connecting to these point and extending it to towards infinity.

And as you can see that the parameter of this equations are now used to represent this line in

the two-dimensional projective space. Also we have learned the relationships between points



and lines, there is a duality in expressing these relationships. For example, if you have point

contentment relationship, then this can be expressed in this form, 

this  is  a  point  is  represented  that  say  transposition  of  the  column  vector  of  point

representation in a canonical form, and this is the line representation of the line what we have

shown here. So, if I take this matrix product that should be equal to 0, as if this is a dot

product of these two vectors. 

So, this could be expressed as in this form that I can write it as x transpose l equals 0. So, this

transportation  is  represented here and symmetrics  multiplication.  And we can see in this

relationship that if we interchange the position of point and line same relationship holds, so

that  is  the  dual  principal.  Similarly,  there  is  another  example  of  this  kind  of  dual

representation that is if you would like to compute a line, given two points in this space,

suppose you have another point in this line and you would like to represent it. 

And then ah how do you get that relationship? That is a point is a intersection of two line. So,

we consider there is another line which is l prime. And this representation this l cross l prime

will be the operation that would give you the corresponding intersection intersecting point.

Similarly, if we consider a line is defined by two points say this is x and this is x prime. So,

you get  x  cross  x  prime  as  line  l.  So,  this  is  the  duality  what  I  was  talking  about  you

interchange the point and line into this relationship, and still that relationship holds. So, now,

we will continue this discussion and we will further see what are the properties are there in

the projective geometry. 
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So, one of the interesting property in this space that how do you express the intersection of

parallel  lines?  We know in  normal  two-dimensional  real  space  which  we studied  in  our

school geometry, two parallel lines they intersect at infinity, but there we could not qualify

the nature of infinite point, nature of point of intersection at infinity. We will see in the two-

dimensional  projective space this could be qualified.  Let us see how, let  us compute this

intersection. 

So, here we are going to compute, here you can see that there is an there are examples of two

parallel lines this is given by this equation. Suppose, this is this parallel line and take another

parallel  another  line  which  is  parallel  to  it  by  this  equation.  You  can  observe  that  the

coefficients a and b they remain same; they remain the same, so that is why this parallelism is

established.

So, to compute the intersection of these two parallel lines, we can apply the cross product

operations  of  three  vectorial  representation  of  these  lines.  So,  we  will  perform  that

competition say line l 1 represented by this three vectorial form, and l 2 is also represented by

another three vectorial form. And we would like to take the cross product of these two to

compute the point of intersection. So, as we did this exercise in the previous lecture, we will

carry out the same computations in the similar fashion we will be computing it.

So, we are computing the cross product. So, let me consider the components of these vectors

arrange them in rows, and then expand the determinant. So, let me do it as you understand



that this is the sub determinant which unit to compute as a component of i. So, this would be

b c 2 minus b c 1 i. The middle part, so we will write it as minus of these two which is a c 2

minus a c 1 j. And finally, the third component by suppressing the third column, it would be

ab minus ab k.

So, if I write it in the vectorial form, I can write this the resultant vector as b into c 2 minus c

1, then a into I can write it as c 1 minus c 2. You note the change of sign because of this

negative sign here, and then 0 that is the third component. So, this is the intersection point. In

fact, this is equivalently I can write these vector as b minus a 0 by taking the scale factor c 2

minus c 1, no outside. 

So,  this  equivalent  representation  itself  it  is  sufficient  to  say  that  this  is  the  point  of

intersection of these two parallel lines. So, now, you can see that this point if you notice that

the scale value is 0. So, if I divide the scale value, divide the other coordinates by the scale

value,  those coordinates  will  become infinite.  But the nature of infinity  is  captured here,

because  it  is  qualified  by these two values  b and minus  a.  Let  us  try  to  understand the

significance of this representation. 
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So,  if  I  rub  this  you  know  computations,  so  you  can  see  that  we  have  the  point  of

intersections in this form. And how this line is represented here, this line this particular point

of intersection, how it is represented? So, we will say that in the two-dimensional projective

space this point b minus a 0 it is represented as a point in a plane which is parallel to the



projection plane. And this plane is called principal plane, because it contains the access x and

y. 

And not only this point b minus a b minus a 0, but also the ray passing through this point

connecting to the center O, the whole ray itself is representing this point because that is how

the elements in the projective space is represent and this is the point of intersection in this

representation. This point is called ideal point that is a technical term will be using it more

often. And the plane where all these points are line for all of them the third coordinate is 0

that  plane  is  also  called  ideal  plane  which  is  incidentally  is  the  principal  plane  of  this

representation. This form of representation is called canonical form of representation.
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So, let us understand the meaning of an ideal point. So, we consider a two-dimensional plane,

where you have these two parallel lines, and these are the x axis, and this is the y axis. So,

this is x axis; this is y axis; say this is the origin of this representation. So, a straight line

given this equation ax plus by plus c equals 0, one of the straight lines in this representation,

and you know the other straight line which is parallel to it should can be represented as ax

plus by plus some value c 1 which is not equal to c in this case that should be equal to 0.

So, this straight line particularly if we notice that this can be represented also in another form

very well known analytical geometric form. I can represent as y equals minus a by b x plus c

by b, where you see that this is a slope of this representation, and the relationship between the



slope and the angle of this line which it makes with x axis that is also known to us. So tan of

this angle that would give you the slope.

So, we can see how a and b they are related with this representation. So, intersection point is

given by this b, minus a, 0 that you have computed and this point is related with this slope.

So, what is a point, ideal point? In that case it is simply representing a direction, a direction in

this two-dimensional plane. So, a point ordinary point in the two-dimensional perspective

projection space or two-dimensional projection space is representing a ordinary point, there is

an one to one correspondence with the ordinary point of a two-dimensional real space also.

Whereas for the ideal point, it corresponds to a direction in that plane, and that direction is

given by this angle theta which makes an angle with respect to x axis that is the implication

of an ideal point. 
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So, just to summarize this fact, ideal points are points on the x y plane or principal plane

parallel to projection plane. And for canonical coordinate system, they are of the form x y 0.

So, the third dimension which represent the scale that would be 0. An ideal point denotes a

direction toward infinity that is the implication of an ideal point. 
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There  is  another  interesting  concept  in  this  projective  space  in  this  representation,  this

concept is called line at infinity. So, let us try to understand what is a line at infinity. You

notice  this  particular  axis which  is  extended towards  the direction  of  parameter  c  that  is

represented by this particular representation 0 0 1, this is the column vector. This is also

representing  an  element  in  the  two-dimensional  projective  space  which  are  which  is

representing all the lines. So, this is a representation of a spatial line.

Let us see what is the property of this spatial line. Let us consider this particular operation. It

says multiplication of the transpose of a point incidentally which is an ideal point. So, this is

an ideal point and this is the line, what I was referring at. If I perform this multiplication, you

can say that this is giving you 0, it is very simple to check this computation. 

So, what does it signify? You choose any ideal point and you perform this operation you will

get  0.  This  is  the  relationship  between  a  point  and  a  line  that  is  a  point  contentment

relationship, which means all the ideal points they lie on this particular line and this line is

called  line  at  infinity.  So,  to  summarize  their  definition  of  line  at  infinity,  it  is  a  line

containing every ideal point and in canonical system it is given by 0 0 1. 
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So, what should be a model for the projective plane? In this case, we can represent all the

points in the projective plane using this geometric concepts, this is a geometric model. So,

you can observe that  this  is  a  plane  of  projection,  this  is  a  plane  of  projection  which is

represented  by  the  symbol  pi.  So,  all  the  points  which  are  in  the  real  space  and which

corresponds to a point in the projective space directly, they lie on this particular plane of

projection. And every point corresponds to a ray passing through this point connecting the

origin. So, any point is related with a ray connecting to origin passing through that point. 

Similarly, if I have considered a point in the principal plane or ideal plane that is also an

element of the projective space. So, all this point which are lying in this plane there was a

part of the projective space. And they are representing all ideal points and as I mentioned

they are representing a direction with respect to this plan of observation. And any straight line

on this plane you can see it is geometric interpretation is that it is a intersection of a plane

containing the origin and intersection with the plane of projection. 

So, this is what is your a geometric model by which we can understand the two-dimensional

projective space, so that is what a straight line passing through the origin, that is how a point

is represented in a projective space. And a plane passing through the origin intersection of

that plane with respect to the projection plane that intersection represents a line in that on that

plane, or any line is actually representing a plane passing through the origin.



So, mathematically we can say the set of all points in a projective space is also related or they

are equivalent to set of all points in the three-dimensional real space excluding the origin, as I

mentioned earlier origin is a singular point of the projective space. Similarly, I can consider

also a real space two-dimensional, real space every point in that real space representing some

point in the projective space. 

In addition to that, there is another plane parallel to the real space that is the canonical in the

canonical representation or ideal plane, all points in that ideal plane is also represented. So,

instead of writing it as a plane containing all points, simply I can write all those points, they

lie on a particular line which is called line at infinity. And this line at infinity is given by this

particular you know structure. So, these itself represents all the points in the ideal plane. So,

this is a summary of this representation.
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Let us try to understand another particular feature in the two-dimensional projective space

that  is  called  projection  of  parallel  lines  that  feature  we  would  like  to  check  from any

arbitrary  plane  how  this  projection  appears  in  the  projective  space.  Let  us  consider  a

projective  space  given  by  this  representation,  that  means,  there  is  an  implicit  three-

dimensional  representation.  You have this  ideal  plane,  you have those access  a  plane  of

projection,  and  any  point  in  this  projection  plane  is  represented  through  this  plane  of

projection.



And let us consider a plane in a arbitrary plane, and a parallel line two parallel lines in that

plane. So, a plane is denoted here by the symbol pi. And if you would like to project this

parallel line on the canonical plane, let me draw these two rays passing through any points

lying on this plane. So, these rays they intersect the plane of projection, and the intersection

would be given by a straight line lying on that plane of projection.

Similarly, consider the other line which is parallel to the parallel to this line. And if I consider

the other line and perform the same representation, same projection, and projection of that

line on the canonical plane which means I have to get the intersection of rays connecting two

points lying on that straight line, and those intersecting points they will form a line. What do

you observe that though the lines are parallel in plane pi, but in the canonical projection plane

these lines they are meeting to a particular point. And this line this point is called vanishing

point. So, vanishing point is a point of intersection of parallel lines which are projected on the

canonical plane.
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We try to understand a bit more about this vanishing points; the their implications would be

more clear here. You consider parallel lines on plane pi in various directions. Suppose, you

take  two directions  and there are  two representative  lines  which  parallel  lines  which are

denoting  those  directions.  And  if  I  take  the  projections  of  those  lines  in  the  canonical

projection plane or in the plane of projection, as we can see that these two lines they would

appear like meeting at some point which is a vanishing point.



Similarly, say other two lines, it would appear also meeting at some point which is a another

different vanishing point. So, all parallel lines in that direction, so if I take another parallel

line in this direction,  that would also meet at the same vanishing point.  If I take another

parallel line see in this direction, that would also met in the same vanishing point here for this

group of lines. Interestingly if I connect these two vanishing points, then we get a line, and

this  line  is  called  vanishing  line,  because  any  parallel  lines  set  of  parallel  lines  in  any

directions they are vanishing points in the plane of projection will lie on this particular line

which is called vanishing line.

For example, if I consider a parallel lines see in this say if I consider this is another set of

parallel lines, and if I take the plane of their projection on the plane of projection. So, what I

will get? I will also observe that we will observe that those two lines they are meeting at a

point which would be the vanishing point. And that point will also lie on the line on the same

straight line connecting to the vanishing points earlier we have seen, that means, that point is

lying on the vanishing line.  So, this is a summary that vanishing points corresponding to

parallel lines of a plane lie on a line and that is called vanishing line.
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Let me draw a real life example to show that how vanishing points do exist. You take this

particular image and you can see that the edges in the horizontal direction as we understand

from that notice board and edges in the vertical directions, they are meeting at some point.



For example, in the horizontal direction, if these two edges this particular two edges they are

meeting here and in the vertical direction.

So, here what is shown here that even you take another parallel line, another line parallel to

same direction like this text; text are also in the horizontal direction. So, this line also will be

meeting at  the same vanishing point, because as I mentioned all  lines parallel  to a given

direction will meet on a single point that is the vanishing point. And similarly the vertical

edges also they will also meet some vanishing point, and connecting these two vanishing

point we will give you a vanishing line. 
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This is a visual demonstration of vanishing point that we can see that this is an image of a

road, and which is captured from the front of a car. And you can see that how the edges of

that road is meeting at a point at infinity, but this point we can sense, but it remained ever

(Refer  Time:  29:18)  let  say.  So,  our  journey  is  to  our  infinity,  we  can  say  it  from our

perspective projections point of view, but really cannot touch it that is how a vanishing point

could be also interpreted. 
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There are there is another element in the two-dimensional projective space which is called

conics, which are conics. And we will be considering their representation also in a projective

space. So, how conics are represented? They are curves described by secondary equation.

And this is the form of the equation which has been shown here.

So, and if we consider this representation translate this representation in the homogeneous

coordinate, each point instead of represented by 2D real coordinate of x and y, so in a 2 d real

coordinate a point is represented by x and y. So, there in the homogeneous coordinate we

know how this coordinates are represented by using this scale factor. So, x is equated with x

1 by x 2; and y is equated with x 2 by x 3. And if I replace this in this equation, then we will

get a representation of conics in the homogeneous coordinate representation, and this is how

this representation looks like.
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So,  to  make  this  representation  brief  once  again  we  will  be  using  the  matrix  form  of

representations using vectors for representing a point.  And we can see a two-dimensional

matrix  represents  a  conics,  this  is  how it  is  represented.  So,  this  is  the  general  form of

representation of a conics. And we can see that this  coefficients a,  b, c, d, e, f,  they are

representing a conics. And these equation can be simply represented by this particular form.

So, if you are wondering how I could get it,  I  can consider the homogeneous coordinate

representation say let me write it as x 1, x 2, x 3, that is what x transpose, then C is given by

this matrix. And then we have the column vector representation x 1, x 2, and x 3.

So, if I perform this matrix multiplication, you can check you will simply get this expression.

So, finally, a conics is represented by this , you can observe that this is a symmetric matrix,

its  dimension is  3 cross 3.  And you have how many parameters  are there? there are six

parameters a, b, c, d, e, f. But as you know in this equation if I multiply this C with k, still it

remains the same conics. So, it is an element of projective space. So, one of them can be

treated  as a scale  factor.  So,  ultimately  the degree of freedom in this  representation  is  5

though there are 6 parameters. So, I can represent a conic by this 6 elements, but one of them

is a scale. So, degree of freedom is 5.
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So, naturally to define a conic uniquely I need at least five points in the two-dimensional

projective  space  and  I  can  write  those  equations  using  that  five  points.  So,  this  is  the

equation, they should satisfy this equation, and this is a representation of a conic also in a

vectorial form. 
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And if I get the five points, I can write five equations and then I can solve this equations

because there is a 5 degree of freedom by taking one of the parameter by fixing it at some

value, I can solve it. There could be rank deficiency in this representation rank deficiency in



C. And in that case here is degree of freedom is less than 5, and the there are special cases

those are called degenerated conic, like there could be two lines of rank 2. And a repeated

line of rank 1 those are the rank deficient representation of C. We will also check how this

representations could be done, could be expressed analytically. 
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For a conic, its tangent lines are well related very in a convenient from it is related with the

point which is lying on that conic, and this is a relationship that is given by simple linear

relationships. If I multiply the point with the matrix C, then we will get the corresponding

tangent line l. 
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Now,  this  gives  an  interesting  relationship  of  a  conic  representation,  we  have  a  dual

representation of a conic. In this case a conic can be represented by all tangential lines which

is enveloping which forms an envelope of the conic. And you can see that the expression is

also in the similar form in the previous case it was x transpose C l, now it is l transpose

another representation of conic C star it is a different matrix 3 cross 3 matrix, and l transpose

C star l equals 0.

So,  the  relationship  between  the  original  conic  representation  with  the  dual  conic

representations can be found from this particular case. See if I have l equals C x, then I can

get x equals C inverse l, then x transpose C x equals 0 that is the original representation.

From there I can derive the representations involving only line l, and this is how the algebraic

manipulations, every x is represent is replaced by C inverse l. And if I take the transpose

operations of those matrices that property, finally we see that we get l transpose, then all the

composite matrices involving C involving constants and another l that is equal to 0.

Now, the this whole thing can be considered as a representation of another conical form,

another form of conics which is the dual representation. We can simplify these expression

further by using matrix algebra, and we can represented as l transpose C minus, that means,

transpose of C inverse because you know that that C into C inverse this is this is equal to the

identity matrix ok.



So, this is the identity matrix and so we can just simply you know ignore it from this term,

and then we gets you know this is what is C star incidentally, since C is a symmetric matrix.

So, transpose of its inverse, this transpose is same as the original matrix, that means, this is

equal to C inverse itself. 

So, finally, the dual conic representation of C is nothing but its inverse there is a interesting

and very beautiful relationship involving the conics. So, a nice you know picture from the

book from Hartley and Zisserman. You can see this is the original representation of conics in

the point space, and these are representation of conics with the lines these are the two dual

representation. 
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And degenerate conics we mentioned earlier if the rank of matrix C itself is less than 3, then

we have some degenerate conditions of representation. Like with rank 2, a conic is defined by

only two lines or two points, which are contained in a conic and they are defined only that

lines and points. For example, a rank 1 it is the repeated lines and points. 

For example, in a degenerate point conic, we have to we have to specify it using two lines,

say a line given by parameter l or vector l and m. So, l dot m transpose plus m dot l transpose

that itself we will give you the conic representation. You note that the vectorial form of l, it is

a 3 vector. So, if I perform this computation, it is 3 cross 1, and this is 1 cross 3. So, the

dimension could be 3 cross 3, and which is a conic representations, but its rank is 2. There are

only two you know directions, it will involves only two parameters.



So, if I take any two line l and another line m this itself these operation the pair of these lines

is representing a conic, because there are there is a point of intersection of this line which lies

on both this point, and that is what is representing a very generate degenerate conditions.

Similarly, degenerate dual conic is represented by two lines, two points x y transpose plus y x

transpose. So, this is what is the degenerate representation of conics. 
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So,  we  can  summarize  our  discussion  on  this  projective  geometry  is  two-dimensional

projective space that  a point in a 2-D projective space it  is  represented by a ray passing

through origin of an implicit 3D space. It requires an additional dimension for representation.

And we call that representation as the homogenous coordinate representation. Then a straight

lines in 2D real space those are also can be represented as an elements of a 2D projective

space that is the space representing for lines of 2D real space.

So, points and lines they hold duality theorem. So, these are the duality theorem which we

have learned that is x transpose l equals 0 that is a point contentment relationship which can

be expressed in the dual form also l transpose x equals 0, x equals l cross l prime that is the

intersection of two lines keeps a point. A dual form is intersection of two points gives a line

which is also in the same kind of operations. Then there are conics in 2D projective space

which are represented by a 3 cross 3 symmetric matrix. And every conic has a dual conic or

line conic as an envelope of its  tangents.  So,  here we come to the end of this particular

lecture.



Thank you very much for listening.


