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Lecture - 58
Deep Neural Architecture and Applications Part – IV

We continue our discussion on Deep Neural Architecture and Applications. In the last

lecture we have discussed about convolutional neural networks and we have also

considered different architectures of convolutional neural network.

(Refer Slide Time: 00:35)

Let us consider a problem at this stage to find out the number of parameters and also to

determine the sizes of the output or input to a particular layer given a specification of

convolutional neural network. So, consider this exercise, a deep CNN architecture which

takes an image of size 3240240  as input.

So, in the input there are 3 channel input and for the purpose of classification into two

classes and the architecture has three convolution layers, where in each layer the filter

sizes are of 77 , 55 and 33 and the number of channels in this layers are 64, 32

and 16. So, these layers they are specified from input to the output and then there are

two max pool layers in between every convolutional layers.



So, which means two max pool layers of filter size 22 with stride 2 in both the

directions between the first and second and second and third convolutional layers. And

after the third convolutional layers we have two fully connected layers having the

number of neurons as 50 and 20 respectively. And the activation function of each neuron

used in this network is the ReLU or rectified linear unit function.

(Refer Slide Time: 02:09)

So, the problem here is that we have to provide a schematic diagram of the architecture

of the network, provide the sizes of outputs from each convolutional layers and compute

the number of parameters that you require to learn in each layer. So, let us see how we

can find or we can compute which have been asked here.



(Refer Slide Time: 02:33)

So, let us consider the architecture, a schematic diagram of the architecture itself. So, as

you can see that there is an input layer and which is going to the first convolutional layer

of filter size 77 . And since there are 64 channels so, it should be a filter size of

6477  . Then it is followed by a max pool layer of 22 and stride is 2 there.

And, then again the output from the max pool layer is fed to the fed to a another

convolution layers whose filter size is 3255  , because there are 32 channels output

from that convolution layer. And, then again it is followed by a max pool layer of 22

size, this is the third convolution layer or final convolution layer of our architecture.

So, output from this max pool layer it is fed to that convolution layer where filter size is

of 33 and also the there are 16 channel output. So, it is 1633  that is what will be

considering, that is not exactly filter size it is 6; the last 16 is showing it is the 16 channel

outputs. Filter size will be 33 will see that thing. And, then this is being fed to the fully

convolutional layers where there are 50 neurons.

So, the output from the 16 channel output from the third convolution layer, they are all

flattened and they are considered as a say linear vector and or in the 1 dimensional

feature vector. And, then that is fed to the fully connected layers of 50 neurons, this is

also this output from this layer also is fed to another fully connected layer of 20 neurons

and then those are again connected to output neurons. So, this is the output layer where

there are 2 neurons and it is used for the classification because there are 2 class



classification problems; so, there are 2 neurons at the output. So, this is a schematic

diagram of the architecture.

Let us now determine what should be the sizes of outputs from each layer. So, the input

here as I has been specified that we have it will be handling and a size of 3240240 

this is the input size. So, the output if I consider 77 filter and as you know that it is

only the output should be from those pixels of the input where this filter is fully

embedded. So, filter size is 377  ; that means, it is the number of channels of the input

that would determine the depth of the filter and 77 is its width and height.

So, filter size is 7 cross 7 not 64, if I have mentioned wrongly earlier 64 is the number of

channel here in this architecture output channel. So, that 377  filter is embedded and

then fully embedded on those pixels only from there the output has been provided. So,

you have to leave around those boundary pixels where, it could not be fully embedded.

So, you have to basically subtract 6 pixels from width and height and only 1 plane will

be coming out of this process. So, you have 234234 and the since the output has 64

channels; so, there are 64 such filters. So, the output is 64234234  . So, this is our

output size from the first convolution layer, then this goes to the max pool layer of size

22 and stride 2 which means they fill the input size should be half of the output of max

pool layer should be half of the input size and number of channel will remain same

which is 64117117  .

Then it goes to the next convolution layer where the filter is a 55 and since there are

64 channel input; so, filter size would be 6455  that is the depth of the filter. Once

again you get only know 1 plane output 1 channel output from each filter there are 32

such filters.

So, you have to leave aside those boundary pixels where they are not fully embedded. So,

117 you have to subtract 4 from there so, it would be 113113 and since there are 32

channels; so, it is 32113113  . This will again go to the next max pool layer of 22

and it has to be divided by 2 and since it requires full embedding of max pool layer; so, it

would be only the lower ceiling or of the
2
113 .



So, it is 325656  channel remains same. Once again 1633  filter there is a third

convolution layer, actually size is 3233  and there are 16 just filters. So, you have to

subtract 2 from 56 and the size will be 165454  because there are 16 channels. Now,

the all these 2 dimensional array output, it will be flatted into a 1 dimensional vector of

size 165454  and that would be input to the fully connected layer of 50 neurons.

So, each neuron will have that many number of weights. So, the total number of weight

will be coming to the total number of weight whatever. So, output of 50 neurons from

the fully connected layer would be 50 only. And then output of 20 neurons from the fully

connected layer it will be 20 only and then you have 2 class outputs. So, there will be

from there will be 2 class output.

So, which is not written here, but there are even 2 outputs from this layer. So, this is the

sizes of different outputs from different layers and next we are going to count the number

of parameters. So, I have indicated by arrows by showing that we will be counting the

parameters of those layers which is associated with those layers. So, consider the first

layer so, we will be considering number of parameters. Consider the first convolution

layer as the filter size is 377  because input is 3 channel. So, there 1 filter size would

be 377  , but there are 64 such filters.

So, it would be 37764  that many number of weights and each 64 filters will have

also bias; so, plus 64 bias. So, in the green color I am showing this count of parameters.

So, this is answer that the number of parameters in the first convolution layers will be

this.

Similarly, for the max pool layer since we know that max pool layer it does not require

any weight, it is already specified by its sizes itself. So, the number of parameters would

be 0 there. So, that is what is max pool layer, next layer 55 then the filter size is 64

55 is 64 depth is 64. And how many filters are there? There are 32. So, it should

be 326455  , that many weights plus there are 32 filters; so, there are 32 bias.

So, this should be the number of parameters from this layer. Again there is a max pool

layer so, we will have 0 here. In the next it will be fed to the 33 filters and depth

would be 32 because, the input to that layer it has 32 channels. So, it is 3233  and

there are 16 filters. So, 163233  plus for each 16 filters there are 16 biases. So, we



will have 16)163233(  Next it goes to the know fully connected layer and as I

mentioned that the size of the input here is 165454  each input will have a weight to

the fully connected there and there will be 50 such neurons; so, there will be 50 such bias.

So, it should be 50)16545450(  so, that is what here and here the size is 50.

So, it will be 50 weights should be connected to every neuron of 20 neurons and there

are 20 biases. So, it is 20)2050(  and again since there are know still you require

more weights because this is the output layer. So, output here its size is 20; so, each

neuron will have 20 weights and 1 bias so, it should be 2)220(  So, this is the total

number of parameters those are involved in this architecture, what I have specified in the

problem statement. Understand that this is how that parameters and sizes could be

determined given the specifications of a particular CNN.

(Refer Slide Time: 12:22)

So, let us now consider another kind of problem which can be solved once again using

convolutional neural network. This is this problem is called object recognition and

localization. So, in this problem the task here is that given an image not only you have to

identify the level of the object, but also you have to identify which portion of the image

where this object lies, in the form of a rectangular block.

So, any rectangular block can be defined by the two corners of the block in pixel

coordinates. So, that is how the specification of rectangular block will be there.



(Refer Slide Time: 13:05)

So, there are different techniques, this is a very classical problem and even before the

deep neural architecture there are methods by which people have tried to solve it. So, this

is a pre-CNN and the fact is that the object while it is which the region of the object in

the image that needs to be identified. And, we call that task is as a region proposal and

which means you would like to find out a probable region which contains an object and

then you try to find out that what is the object in that region.

So, this is a kind of approach; there are stages like first you propose the region and then

you describe that region by features. So, you have to extract features and then use those

features to classify and if you could find some objects in your target in your classes.

Then how you decide about that, otherwise you may say that region does not contain

any object. So, there are various methods which have been reported.

So, one method was very exhaustive means you are searching every rectangular type of

rectangular block which is a combinatorially a hard problem, you need to use some

heuristics there. So, that is what you should do it. And there are methods also to propose

you certain heuristics to propose those regions. And then for feature extraction you can

use some handcrafted features. Handcrafted features I mentioned what is used considered

as a handcrafted features by considering the classes of objects, you predetermine that

what kind of features will be computing.



For example, you can use shift operator, you can use the descriptor of shape or other

kind of key point detectors and key point descriptors those. And, then combine them

aggregate them to define a feature. And, then there are different classification algorithms

you can use like linear classification algorithms. And, for deep neural architecture based

technique there are three such variations. So, very first a technique called RCNN has

been proposed.

So, RCNN what it does? It considers the task of region proposal should come from the

conventional methods and then the feature extraction part is only should be done using

CNN. So, that you do not have to use any handcrafted design. So, as per your problem

features could be extracted learnt and extracted and then use a classifier to find out the

object.

For example, linear SVM that is a classical classifier a rather another improvement or

variations over on top of RCNN, where the both feature extraction and classification is

done by a deep neural network. Whereas, the region proposal is still carried out using the

conventional methods and the third variation that whole thing can be performed can be

done is in a deep neural architecture.

(Refer Slide Time: 16:29)

So, this diagram it is explaining this flow of this computation. So, you have an input

image and then the regions are proposed. So, these yellow boxes are proposed regions by

conventional methods, then you extract them one by one and then fed it to the CNN, as



CNN takes a fixed input size. So, you need to work those regions and then you know

compute the features.

So, last layer of the CNN will give you a future descriptor and which is used in a

classifier. Once again this classifier is the conventional classifier and then you decide

what kind of class it is based on those target classes of this classifier.

(Refer Slide Time: 17:13)

For this particular method as I mentioned that it uses conventional method for proposing

regions. So, there is a method based on selective search which uses hierarchical

grouping based on color texture size and it is a bottom up method. So, it performs bottom

up segmentation then it merge regions at multiple skills and then based on the regions

property it decides whether it contains any object or not. So, this figure tries to

summarize this process.

So, it considers very small segments at the bottom layer, then it merges it and the bigger

segments and it tries to identify out of them some of them are considered that they

contain the object. And then you use the rectangular box enclosing those particular

segments.



(Refer Slide Time: 18:12)

Their problem in this method is that the training objectives are not very clearly

mentioned here. As you can see that the CNN is a feature extractor stage, but know what

is what should be the objective function of that CNN. So, far we have discussed about

training of CNN based on some classification task. So, even the features are learned

based on the end objective of classification, but in this case since the classifier is a

conventional classifiers; so, classifier is independent, independently designed.

So, this is a problem; so, you have to consider some intermediate objectives to learn the

CNN. So, kind of adhoc is remains there. So, you can use some pre trained network, but

now again you need to do fine tuning based on your domain, based on your problem

domain. So, that is required or and also we require to once again train the SVMs, Support

Vector Machines based on those features and usually feature descriptors are quite large;

so, this will take lot of time. So, and also another training you have to do because you

have to find out the regions.

So, though the regions are proposed, but you need to do some kind of fine tuning. So,

some kind of regressions based on those proposed regions you need to do; so, that also

requires some training. So, there are so, many different kinds of trainings are involved

that is why it is very slow and also it takes a lot of disk space. So, inference is also slow,

it need to run full forward process of CNN for each region proposal.



So, that is what because for each region proposal you are extracting features

independently and you will need it so, many times you need to iterate this process.

(Refer Slide Time: 20:05)

So, that is why its inference time is very large, it takes quite a bit of time. So, what are

the times components here? You can see there is a time called prop time or proposal time.

So, it is time taken for generating all proposals, then number of depending upon number

of proposals that is generated at this stage. So, each proposal or each region has to be

fed to the CNN.

So, it extracts the feature. So, it is number of proposals into the time taken for

computing features using CNN and finally, each one once again has to be classified. So,

that there is a classification time and time taken to identify the object in the image. So,

this is a total inference time, if I consider for RCNN.



(Refer Slide Time: 21:06)

So, to an improvement over this particular approach is that you can use a first RCNN

network. And here the idea is that instead of using an SVM, we can use also the whole

thing classification and feature extraction can be carried out at the same go. That means,

for every region it will be passing through both feature extraction and classification in

this case.

So, it computes CNN feature a map of the for the whole image. So, and also it is not

required to compute the feature map of the whole image. You can just process the feature

maps in ROIs and you know here only the thing is that it pools the ROIs and then again it

passes to the classification stage. So, it is not that deep neural network a deep

architecture is not there at the classification stage it is a conventional classification.



(Refer Slide Time: 22:12)

So, this is what it is doing it, it only uses the same conventional neural network. So,

given the image it computes the whole feature set, then using the region proposal it pools

those features and use a classifier to compute to classify it and also the objects. So, the

time here is the proposal time it remains proposal time and then since it is only

computing 1 time all the features, it is only 1 time convolution network is used. So, it is 1

 that conv time, but every region every proposal is separately classified. So, it is

number of proposals fc time.

(Refer Slide Time: 22:59)



So, first RCNN the features are that each which are vector to sequence a fully connected

layers and two sibling output layers. So, a layer with the softmax probability estimates of

our K object classes plus a catch all background class. So, you are considering that and

another layer producing four real valued number for each of the K object classes, this is

actually regression of the regions.

(Refer Slide Time: 23:25)

So, it just shows the architectures of RCNN, you can see that every we proposed region

is passed through separately through the convolution layers. And, then those are used for

classifying and regression of the regions using regression module and also the SVMs for

classifications; every region every regions are processed in this way.



(Refer Slide Time: 23:55)

Whereas, in fast RCNN you have the only one time the convolutional neural network is

used to generate all the features and also it has propose the regions. So, use those regions

in the feature map those are used for classification; so, those are fed again to the fully

connected layers and then.

So, it is a classifier which could be also neural network classifier like ANN classifier and

those are used for classifying the object and also the finding out the regions; that means,

fine tuning of estimates of the regions using a regression box.

(Refer Slide Time: 24:41)



The loss what is used in the stages classification stage as I have shown where there is a

fully connected layer which is simultaneously classifying the object and also detecting

the box or a rectangular area by the object is contained. So, there are two components of

this loss; so, one component is due to classification and the other component is due to the

regression.

So, and we are only considering those samples those classes which are object classes. So,

u is the ground truth, p is the predicted class. So, if only the it is a object class then only

we are considering the loss due to the regression and this is a linear regression  is any

parameter. So, these this is the thing this is the log loss which is cross entropy loss.

This is predicted class course, p is the predicted class course and u is the true class scores.

And, this is the smooth L1 loss, L1 is the function which is used for computing the

regression the box, the error deviation of the localizations or deviation of the rectangles

from the true rectangle to the predicted rectangle. So, ut is the true box coordinates and

v is the predicted box coordinates. So, this is how the loss function is defined.

(Refer Slide Time: 26:10)

So, then improvement over even faster RCNN is faster RCNN, where the whole task has

been considered you doing it in a convolutional network; even the region proposal also is

done using a convolutional network. So, we call it as a region proposal network. So,

what we can do that using the features what is generated in by the convolutional layers,

the same features are used for generating region proposals.



And, from the region proposals you pool those features which are there in that re-

proposed region and used it for classification.

(Refer Slide Time: 26:53)

So, that is why it becomes so fast and you can see that the first stage is that you generate

a feature map. So, use this feature map to propose regions and also use this feature map

to classify and also regress the rectangular boxes.

(Refer Slide Time: 27:07)

So, this is what is faster RCNN and in the region proposal network in the task is that we

can slide a small window on the feature map and then we can build a small network for



classifying object or non-object. And so, here the task is that you have to classify the

object or non-object and also regress the bounding box locations and this initial local this

is the initial localization.

So, these positions are used and final localization is considered at the final stage of

classification and regression, where box regression performs final localization. So, and

the faster RCNN as you can see that it requires only there is no proposal time separately,

it is 1 time convolutional time and then number of proposals into the time required for

classification.

(Refer Slide Time: 27:57)

So, this is describing the region proposal network. So, you take a sliding window in the

feature map and it is a 256 dimensional feature descriptor. Then you are classifying as

object or non-object or regressing the box location. So, this will give you the initial box

locations of the object, again in the final in the last stage when you are classifying the

objects you can make a fine tune of that locations.



(Refer Slide Time: 28:25)

So, for region proposal network loss what it considers that in this sliding window there

are different shapes of windows are also considered, which may contain a box or object.

So, there are k anchor boxes; so, each one is tested whether it contains a object and also

this box itself becomes the coordinates those are output of this region. So, it contains

there are two components: one is once again classification loss, once again it is a

regression loss. So, these two components are used in the loss function.

In the 2 class loss function standard cross entropy loss is used and because now you are

deciding whether it contains object or not. So, if your predicted object is intersecting

about 0.7 of the true object 70 percent of the true object, then we call this is 1 otherwise

it is 0. So, it is intersection of union.

So, it is the ratio of intersection of predicted object and predicted region and true region

divided by union of predicted region and true region. So, if this ratio is more than 0.7

then we call it is 1, if it is less than it is less than 0.3 it is 0 and otherwise it do not

contribute to loss. So, with this let me take a break here and we will continues this

discussion in the next lecture.

Thank you very much for listening.

https://www.youtube.com/watch?v=ZGjoccDEv8o

