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We are discussing about Deep Neural Architecture. And in the last lecture we discussed

how the deep computation is different from classical computations. And, then we have

considered different types of supervised learning problems or different facets of

supervised learning problem in the context of deep learning architecture.
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Now, in the neural network there is a nonlinearity function, that we know that is used

and those are also called activation functions. And, we have seen particularly the sigmoid

function that is used in the artificial neural network very often. But so, the property of

the sigmoid function is that it squashes numbers to range 0 to 1 And so, it can kill

gradients as you can see it saturates when the value increases or value decreases and they

are the gradient becomes almost 0. And, then it is best for learning logical functions that

is functions on binary inputs, but it is not good for image networks and it is not 0

centered also
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So, there is another activation function which is called tan hyperbolic x. So, it is also

ranging from -1 to 1 and it is also 0 centered, it is 0 centered which is desirable. And,

still it has the problem of that it can kill gradients when it is saturated and it is not as

good for binary functions.

(Refer Slide Time: 01:49)

This particular function rectified linear unit, it is very popular in convolution neural

network in different neural architecture. So, the functional form has been shown here that

is you can see only positive half of the input it is linear and then for the negative half it is



the value is 0. So, that there is a non-linearity and they discontinuity at the value 0 that is

first order discontinuities there.

So, but the advantage is that it does not saturate in positive region. And, it converges

faster than sigmoid and tan hyperbolic data for example, 6 times. And it is very

computationally efficient, but it is not suitable for logical functions for representing

modelling logical functions not for control in recurrent nets not 0 centered output.

And, if it is going into the red region which is the negative part then it is not going to

activate the filters or activate the gradient. So, it stops there so, there is a dead zone in

this case.

(Refer Slide Time: 03:00)

So, to avoid that we can have leaky ReLU so, that you have very small increase in the

negative part also the small gradient. So, which it has those advantage that it does not

saturate, convergence faster and the gradients will not die.
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Other kind of activation function like ReLU we have also exponential linear units. In this

particular graph this blue graph is the exponential linear units which corresponds to this

function. So, the benefits of all ReLU benefits are there and it is closer to 0 main outputs.

(Refer Slide Time: 03:47)

Another non-linear activation function which is called max out neuron; here it is a

maximum of two linear part, maximum of two linear combinations of inputs 11 bxwT 

and 22 bxwT  . So, it does not have basic form of dot product of course, it is non-linear



and generalizes ReLU and leaky ReLU does not saturate does not die, problem is that it

doubles the number of parameters per neural.

(Refer Slide Time: 04:22)

And, we have seen this is the standard architecture of two one hidden layer neural

network or two layer neural network. And, another three layer neural network

architecture.

(Refer Slide Time: 04:35)

And sometimes this is called multi layer or fully connected network or perceptron and

hidden layers are learned feature representations of the input and these are deep features.



So, with this actually I have talked about general features of neural networks and also

deep neural architectures. But, let me discuss the specific a specific deep neural

architecture, which is very popular in various applications and which one is convolution

neural network.
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In conventional neural network, the conventional layer that we need to understand that is

a hidden layer. And, in the convolution layer what we have that input is an image as a

33232  image. That means, for example, it could be RGB 3 channel RGB image or it

could be any other three components.

And there is a filter so, this filter performs the convolution operations over this image.

And size of the filter sometimes it is called kernel also for example, in this size if here it

is given a typical value say 355  . So, first thing the filter extend the full depth of the

input volume. So, 3 is the depth in this example.

So, the filter has to span over the depth and then what it does it takes a dot product. So, I

will explain that so, it convolves with respect to the image which means this filter slides

over every point and computes convolution. That means, a dot products with the input

with the filter weights and then produce that output at that at the central location of that

central pixel of that mask.
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So, this is the example that you have 355  filter w and it is placed within a pixel of

image. And then it takes a dot product and then produces a value and this value is the

output at that at that point. So, for example, in this case you have 355  chunk of the

image; that means, 75 dimensional dot product you are doing and there.

In the neuron as you and as you know that it is the dot product and in the neuron there is

a bias term. So, then you add the bias term and that could be also the output of the

convolution layer. So, one of the feature of this convolution is that it is the locality which

means that objects tend to have a local spatial support. So, this could be exploited using

convolution.
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And the other feature is that weight sharing.

(Refer Slide Time: 07:27)

Since, it will be your convolving over all special locations so, the same weights are used.

And finally, you are generating the output. So, if we consider that boundary conditions

that only pixels, which are fully embedded the convolution mask which is which is fully

embedded within the image at those pixels sites. You are only considering output from

those pixels sites then the size of the activation map get reduced.



As you can see the filter is of size 55 ; that means, along height and along width you

have to leave out two pixels each and at each edges. Because, those are not those pixels

are not fully embedded. So, finally, size would be 2828 and along depth wise also

other planes are not coming into picture because they are not fully embedded. Only the

central pixels convolutions for the central plane those are only considered here. Because

those for those pixels only this pool embedding is available.

Say another feature of this computation that it is translation invariance which means the

object appearance is independent of location.

(Refer Slide Time: 08:43)

Now, you consider that there are other filters. So, there is another second say green filter

of the same size, but its weights could be different. And, it also produced another we call

it channel output. So, it also produce another output.



(Refer Slide Time: 08:59)

And, if there are 6 such filters, you have 6 such activation maps six separate activation

maps. And you can stack this to get a new image of size 62828  . So, 6 number of

convolutional filters.

(Refer Slide Time: 09:20)

So, the features of CONV layer or convolution layer we can consider that is locality,

which is the feature of having local spatial support for objects. Then translation

invariance where object appearance could be independent of location; and weight sharing

which means the units could be connected to different locations having the same weight.



And equivalent each unit is applied to all locations and weights of filters are invariant.

This keeps the number of parameters small or convolution neural network. Of course,

since there are many such layers finally, total number of parameters will be quite large.

Then each unit output or filter is connected to a local rectangular area in the input and

that is considered as the receptive field.

(Refer Slide Time: 10:13)

So, as there is a non-linear function in each neuron. So, after convolution layer we

consider the that the non-linearity at every point itself is considered as a layered response

from the system. Whose input is the output of the convolution layer then it goes through

the non-linear stages at every pixel. So, it is the point wise non-linearity and it increases

the non-linearity of the inter architecture without affecting the respective fields of

convolutional layer, which generalizes the model further.
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And, ReLU is commonly used that I have mentioned. So, what is a CNN it is a sequence

of convolution layers and nonlinearity. So, you have a this is your input you have the

convolutional layer and also the ReLU this is one layer. Then another layer of

convolutional layer and ReLU second layer and it goes on. So, CNN is sequence of such

convolution layers and nonlinearities.

(Refer Slide Time: 11:23)

So, let us also see what are the parameters involved in convolutional layer. Consider

your input is of size 111 DHW  . So, in my previous example we have taken 33232 



that was in size of the input. So, value of 1W was 32, 1H was 32 and 1D is 3. And

considered there are K, number of filters in the previous example this value of K was 6;

we considered 6 filters. And size of the filter is 1DFF hw  .

So, in the previous example we have taken 355  filters, which means wF was 5; hF

was 5 and 1D is kept 3. So, you note that the depth wise the filter has to have the same

number of channels what you have in the input or same number of depth slices, but is

there in the input. Because the idea of convolution layer is that the filter should be totally

embedded within the input image.

And that to at the central slice and that is why the depth has to be the same. And they

need to provide only single channel output. And then there is another parameter called

stride. So, it is considering that the point where you are performing convolutions. So,

how the point could be separated in the grid? So, if they are adjacent then stride is 1;

that was the previous case.

Suppose you leave 1 out of them then the stride would be 2. And also input can could be

0 padded on both sides to keep the size same. So, if you would like to include also the

edge pixels or boundary pixels of the image, then pad the input to 0 and then perform

this computation. And it would produce the output volume size of 222 HW So, what

should be this output volume size? Now these values are all related with the values of

input sizes.

Like values of in ;,, 111 DHW ; 1,, DFF hw , D 1 is not very important here, but 1W and 1H

wF , hF , wS , hS and wP , hP . For all those values they will determine what should be the

size of your output. For example consider the value of 2W and as this is the expressions.

So, it has taken care of striding it has taken care of 0 padding, it has taken care of the size

of the filter and complete embedding of the filters within the input.

So, you observe that the depth number of depth slices should be the number of filters K

here. And what could be the number of parameters? Since the parameters involves say

the weights of the filters and since there are the size of the filter is 1DFF hw  . So, that

many number of weights should be there.



So, it is 1DFF hw  . And if there are K filters you have to multiply with K. So, we are

assuming here that in the convolution layer all the filters of same size and all the filters

of same size. So, the parameters as you can see KDFF hw *** 1 that many weights and

each neuron could have a bias so; you can have K biases.

So, your summary of this particular operations is that d th depth slice of output is the

result of convolution of d th filter of the padded input volume with a stride. And then

offset by d th bias.

(Refer Slide Time: 15:28)

There is another kind of layer in CNN, which is called pooling layer. So, in the pooling

layer it tries to progressively reduce the spatial size of the representation that is it tasks.

So, that it can reduce the amount of parameters and also computation in the network it

controls overfitting. And pooling partitions input image into a set of non overlapping

rectangles.

So, for each sub region outputs an aggregated value of the features in that region. There

are two types of aggregation one is max pooling, which considers maximum value. The

other one is average pooling which takes average value. So, it operates over each

activation map independently.
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So, this is an example of pooling layer, you can see that the input was 64224224 

doing max pooling with 22 filters and stride 2 your living one sample in between. That

is a stride 2 and that is how the input size output size half of the input size. So, you have

224224 output would be 112100 , but the number of depth remains the same.

And the example here it is showing max pooling first we have partition the input into

22 . Rectangles into rectangular sizes blocks and from there you are choosing the

maximum value. And you are replacing you are forming your one pixel for each block.

(Refer Slide Time: 17:01)



So, parameters which are involved in pooling let us observe that. So, here input volume

size is once again 111 DHW  . And pool size could be hw FF  with stride ),( hw SS . So,

output volume size is 222 DHW  and that is related with input parameters. So, 2W

would be 11 


w

w

S
FW . So, that is why that is what you are doing. And 2H is 11 



h

h

S
FH .

So, that is that is the 2H and your number of depth remains the same as the input.

What about number of parameters as you can see? There is no weight no bias nothing

you are it is without when without specifying any things you can perform this

computation. So, actually there is no parameter involved in this operation. It is just the

computations that is providing you the output of the here. It does not depend upon any

parameter. And, it is very uncommon to use zero-padding in a pooling layer.
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Then we will discuss about the fully connected layer which is also coupled with the

convolutional layers or CNNs. So, it contains neurons that connect to the entire input

volume that is why it is fully connected as it is there in ordinary neural networks. And

input volume to FC layer can also be treated as deep features. So, it is either it could be

deep features or it could be the feature representation itself for a classifier. So, these are

the two options for FC layer.



(Refer Slide Time: 18:42)

There are various operations, which are required for efficient training and testing of

CNN or for efficient computations of CNN effective computation of CNN. One of the

operation is known as batch normalization. So, it tries to condition the input and also the

intermediate responses. So, what it does? It normalizes input activation map to a layer by

considering its distribution over a batch of training samples.

Consider for example, you can apply your Gaussian activation maps Gaussian model

there. Using batch normalization you can improve the gradient flow through the network

and it allows also higher learning rates. So, your convergence becomes faster. And it is,

it reduces the strong dependence on initialization this also acts as a form of

regularization of the network. And, batch normalization is usually inserted after fully

connected or convolution layers and before non-linearity.
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So, let me elaborate a little bit about this computation. As I mentioned it normalizes

activation responses of a channel a previous layer. And how does this normalization

work? It subtracts mean of responses of a batch and divides it by their standard deviation.

And transform the resultant output operation by scaling and translation by parameters a

and b. In fact, this is also learned by the gradient descent algorithm.

So, during test time running averages and standard deviations of activation maps are

used with the learned parameter for each channel at a layer.
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So, that is how the batch normalization is carried out in CNNs. There is another

operations which is also quite common and which improves the generalization of the

model and that is called dropout. What it does? It randomly dropout nodes of network at

hidden or visible layers, it could be hidden and visible layer during training.

So, dropout means it temporarily removes that node from the network along with all its

incoming and outgoing connections. And, it regulates overfitting and which is more

effective for smaller dataset it simulates learning sparse representation in hidden layers.

So, implementation of dropout to could be in this way that, you can consider that you can

retain an output of a node with a probability p. And, typically the value lies between 0.5

to 1 at hidden layers and 0.8 to 1 in the visible layers which means input or output layers.
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So, weight becomes larger due to drop out that is one of the effect of dropping out that

whatever weight you compute, you learn now the values could be actual value would be

larger effect would be larger and you get large weight. So, you need to scale down that

weight at the end of the training. And, there is a simple heuristic that if you are outgoing

weights of unit is retained with probability p during training.

Then you should multiply by p at the test time or you can consider these operations

during training time itself at each weight update. And, then you do not required to do it

on during testing. So, you can use the same weight as you learn. So, with this let me take

a break. And, we will continue this discussion in the next lecture, where we will be



discussing different types of convolutional neural networks, different kinds of

architectures in my next lecture.

Thank you very much.


