
Computer Vision 

Prof. Jayanta Mukhopadhyay 

Department of Computer Science and Engineering 

Indian Institute of Technology, Kharagpur 

 

Lecture - 54 

Dimension Reduction and Sparse Representation Part – IV 

 

We are discussing about Sparse Representation of signal or input data vector. And in the 

last lecture we have discussed given a dictionary how we can obtain sparse representation 

of a signal using different pursuit algorithms particularly we have discussed about 

orthogonal matching pursuit algorithms. 
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Today I will discuss about another problem of sparse representation, here we would like 

to learn the dictionary itself. So, in the previous case we have considered the dictionary is 

given and given the dictionary of say K atoms we wanted to get a sparse representation 

given any input signal of dimension n. 

Now, in this case the problem is that we would like to learn a dictionary specific to a set 

of data. So, given a set of data points here we have considered the symbol X as a set and 

xi which is representing n dimensional data vector. Suppose you have N number of such 

data vectors in that set, then what should be a dictionary D of K atoms so that it would 

provide best possible sparse representation for each member of the set. 



(Refer Slide Time: 01:41) 

 

Motivation of learning dictionary could be several that could be several such motivations. 

In particular you would like to learn dictionary adaptive to specific classes of signals or 

data of interest. So, that would make a dictionary suitable for certain application and would 

give you relatively better performance compared to any standard fix dictionary. And, this 

dictionary learns from exemplars and it also ensures that sparse representation properties 

are insured using this dictionaries. 

So, sometimes it may happen that if we use a fixed dictionary given any input data 

representation sparse representation may not be possible with that set of atoms in the 

dictionary. But, if we can tune the dictionary for a specific classes of data set then most 

likely we will be getting a better sparse representation of data. So, this is also another 

motivation. 
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So, just precisely let us define the problem statement here for this dictionary learning, we 

consider a data as an n dimensional vector and you consider a set X which is which consists 

of N number of data points and let us represent it in a matrix form. So, we can consider a 

matrix X by each column represent the data and each column is of N dimension. 

And, then we are considering there are dictionaries of K atoms and again each atom is of 

N dimension whereas, it has to be the same as the dimension of the data we would like to 

have linear combination of this atoms to represent the data. And, that linear combination 

should be sparse and the coefficient of linear combination is represented by vectors yi’s. 

So, Y is also another matrix where each column of Y represents the sparse representation 

of data X. So, the dimension of Y is K dimensional vector because K dimensional 

representation of data point in this case and so, the column vector of the matrix Y of 

dimension K. So, our problem is that we would like to obtain a sparse Y in the K 

dimensional real space such that X equals DY. 

So, this expresses itself the linear combination of dictionary atoms for each data point and 

the coefficient of linear combinations they are coming from the columns of Y or it could 

be approximate. So, let us considered the let us make a dimensional check of this particular 

fact; that means, we are trying to factorize the input matrix data matrix X into two factors. 

One part should give me a dictionary of K atoms, the other part should give me a dictionary 

of N sparse representation for N data points; n here is N. 



So, we consider the dimension of X this is say n X N, then dimension of D this is n X K 

as we can see that n is the size of the column vectors. So, that is why that many rows 

should be there that is n and K is the number of atoms in dictionary D. So, that is why its 

number of columns should be K columns. Similarly for Xn should be the size of the row 

because n represents the dimension of the data point and N is the number of data points in 

X. 

So, number of columns in X is N. Similarly for Y it should be K X N. So, K once again is 

the dimension of sparse representation of data; that means, a few of those elements in that 

column vector Y should be nonzero rest of them should be 0 that is sparsity that is a 

interpretation of sparsity very few of them should be nonzero. 

But the dimension could be very large, it could be quite large from n and that is a dimension 

of data original dimension of data and then N is the number of sparse represented data 

vectors. So, you can see the multiplication DY means n X K matrix multiplied by K X N 

matrix you get the dimensional matching here because you get n X N data matrix. 

And let us also understand that how this representation is to be interpreted. So, we are 

considering that the data vectors [x1, x2,..,xN] and say the dictionaries are [d1, d2, to dK] 

and then each y1 let me write y1 as see a11, a12 to a1K and like this. So, if I consider only 

the first row, if I consider if I consider this dictionary and these are the vectors these are 

the atoms and you know these are the this is the coefficients. 

So, x 1 vector and this is y 1 vector, but which is represented by this K dimensional vector. 

So,  

𝑥⃗1 =∑𝑎1𝑖𝑑1

𝐾

𝑖=1

= 1 

So, in this way for all n vectors you have one column at y; one column of Y. And, this is 

how these vectors are represented and this is how these linear combinations of each column 

vector of x is represented by these corresponding matrix multiplication of D and Y. 
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So, you can apply various sparsity constraints as I mentioned that the K dimensional 

representation of input vector which are given in the matrix Y now these would be sparse 

which means there should be only a few nonzero elements. So, when I have written a 

representation say x 1 this vector when I am representing y say some of 𝑎1𝑖𝑑1 = 1 to k 

only few of this coefficient should be nonzero and rest of them should be 0. 

So, you can apply various sparsity constraints there. So, one of the some of these examples 

of these constraints can be shown here say the 0th norm of y; 0th norm means number of 

nonzero element number of nonzero element of y and that should be minimum. You should 

have that representation that your representation of dictionary atoms and also these sparse 

representation would be such that the number of zero nonzero elements of the each sparse 

represented vector that number should be kept as minimum. 

So, if I consider the whole set y al the set y you can count how many number of nonzero 

elements are there in that matrix that can be also consider as we measured and we would 

like to minimize it. Or we can consider that the approximation; that means, it is for exact 

reconstruction X = DY we can consider this or it may be approximate reconstruction that 

it could be you may not get exact reconstruction of all the input vectors that could be a 

tolerance of Epsilon in the reconstruction in the sense of L2 now and there also it would 

like to minimize the 0th now of the Y vectors. 
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We will discuss if particular type of dictionary forming algorithm which is called K- SVD 

or K singular value decomposition and in this case it is a same problem statement as you 

can see it is the given a set of training signals to obtain the dictionary of K elements that 

leads to the best possible representation for each member in this set with strict sparsity 

constraints. 

Now, the sparsity constraints here we have mention with this I would like to add in this 

case instead of considering always minimization we can make a bound that the 0th norm 

it should be less than or equals sum constant T0 which is a small number. And you would 

like to minimize the L 2 norm in this case that we will took by keeping this constraints we 

would like to minimize the L 2 norm of the reconstruction. 
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So, the principal of this algorithm K similar value decomposition or K SVD that is how 

this algorithm is popular to popularly known, it generalizes the K means clustering 

algorithm or K means clustering problem rather. And, we know that in K means clustering 

what we get, we get representatives of K groups of data vectors and each representative 

acts like an atom in this context. And then you get an extreme sparse representation if I 

consider the any member of that group is represented by that atom only. 

So, we will see that in that in terms of Y matrix how this vector looks when we consider 

its an extreme sparse representation. So, in the case of and in K SVD instead of only a 

single atom representation of K means clustering we consider a sparse linear combination 

of K atoms. So, what it does it chooses a dictionary of K atoms and then it obtains a sparse 

representation and then it updates dictionary atoms to get a better representation out of this 

and repeat steps two and three till convergence. 

So, once it obtains a sparse representation using this atoms then it checks whether any 

sparse representation is possible by updating some of destruction atoms and also with 

better approximation of the input signals. And, if it is possible then it updates and it repeats 

its processes till there is no such improvement is possible. 
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So, let us revisit this K means clustering algorithm and width in the context of this 

particular discussion. Say you have a set of atoms which from a dictionary you remember 

that we have to initialize the centers of clusters K centers of clusters now those initial 

centers are considered here as atoms of dictionary. 

And then what we do that we assign the training examples to their nearest neighbor in the 

dictionary D. So, that is what we did in K means and then given an assignment then we 

update D to better fit the examples. So, far K means clustering we have used L 2 norm to 

check to compute the distance between any sample vector to the dictionary to the atoms or 

to the centre of clusters. 

And then whichever is nearest we assign that vector input vector to that cluster and once 

the assignment is over then you have once again K partitions, then again re compute the 

centers. So, that is what the update is updation process see update mean of each partition 

of assignment. We started with any initial set of distinct atoms and then after convergence 

you consider those are the learn dictionary atoms. 
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So, your codebook here is the K cluster centers those are the dictionary atoms that is your 

code book and you have this training examples and this is what is the representation 

exchange sparse represent sparse vector you can say j ith vector representation would be 

in this form all the elements would be 0 except 1. So, the 1 denotes that atom which is 

assigned to that input vector or this input vector belongs to that group where this atom is 

the centre of that cluster. 

So, that is why it is called extreme sparse because it has only one nonzero element and rest 

of them at 0. So, in your sparse representation you have only this type of vectors; that 

means, extreme sparse vectors it should be one of them and your optimization problem as 

we have considered for K means. It is once again as you can see your minimizing the L 2 

norm square of the L2 and your update policies that if ith input vector is closest to the 

dictionary atom r th dictionary atom then assign the r th sparse r th you know, then the 

presentation should be here which is exchange sparse vector which means an nonzero 

elements 1 would be only at the r th location. 

So, once you have computed that location then for all the vectors once the assignment is 

over, then you update each partition which means that you are considering mean of those 

input vectors which have the same assignment. For example, with the same assignment of 

e j that is the sparse vector representation for the j th group and you compute its mean that 

would be your new dictionary updated dictionary atom. 



So, this operation you are doing iteratively and at the when it converges then we are you 

stop and that is the dictionary you learned and already the sparse representations are also 

derived as extreme sparse vectors for each input vector. So, you have mentioned this is 

problem provenience norm that you should consider. 
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So, that was K means clustering and let us considered now that how this concept is 

generalized for K singular value decomposition approach or K SVD algorithm. In this case 

also we start with any initial codebook; we will discuss how this code book is derived here 

and suppose there is an initial course code book. 

And then and also you have the training examples as given in this form a N number of data 

points and it can be represented as a data matrix X and you would like to get sparse 

representation once again a matrix of K X N each column represents the sparse 

representation of K data vector. And why I provide linear combination of maximum T 

naught nonzero term that I mentioned while discussing this sparsity constraints that is 

involved in KSVD algorithm. 

So, the optimization problem here is that you would like to minimize the provenience norm 

X - DY its a generation of L2 norm square and subject to that number of nonzero elements 

for each sparse representation is less or equal to T 0. 
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So, this computation is carried out by a nice manipulation of the optimization function that 

we will discuss here. If I consider my optimization function if you note here the 

optimization function is given this; that means, provenience norm of X - DY and how this 

can be written in a different from that is that we would like to discuss now consider the j 

th row of Y. So, if you remember the representation of y each column is a sparse 

representation. So, I have represented by the coefficients a 1 1, a 1 2 to see a 1 k. 

So, this is the y 1 of the sparse represented vector and this is representing x 1. So, y 1 is 

represented representing x 1. Similarly y 2 can be represented as linear combination say a 

21 a 22, so this is my say notation a 2 k. So, this is y 2 and in this way you are representing 

say any particular small k y as see a k1 a k2 to a k1 is k another is K; K is the dimension 

and finally, there are n number of representations because there are n number of data 

points. 

Now, you consider any particular row say j th row which means this should be a 1j a 2 j a 

small k j a capital N j. So, this j is represented as the is j th row vector. So, now, this 

expression X - DY this can be conveniently written in this form you can see that what is 

doing it is the sum of the rank 1 matrixes in the other way. 

So, you have if I write it in this way that d 1 d 2 to dn and this is the y matrix. So, so we 

can write it as say d 1 into this first row; that means, y 1 T in our notation. So, d 1 this into 

this. So, the dimension of d 1 is n X 1 and y 1 T its dimension is 1 X N because there are 



N elements. So, there are N elements in a rho there are N columns. So, and only 1. So, this 

would give you a matrix of n cross N and x is a matrix which is of n cross N. 

So, if I consider sum of all these matrixes that would actually cover the x. So, it is a same. 

So, this DY; DY is the same as this 1 it is not same it is trying to represent that we are 

trying to get that D and Y which will be which will be the same as a x if I multiply them, 

but 𝐷𝑌 = ∑ 𝑑𝑗𝑦𝑝
𝑗𝐾

𝑗=1 . 

So, this is the trick. So, you are considering every atom dj and find out what is its 

contribution to the reconstruction of DY the whole multiplayer multiplied factor. So, the 

advantage here is that if you do that, then what you can consider you can separate out the 

contribution of a single atom say d k. 
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So, this is the single atom d k is the contribution of atom dk and this is a contribution of 

rest of the atoms towards formation of DY and which we would like to get as close as 

possible to x. So, if we have this then as I then the idea is that since we are separated out. 

So, we can observe just what the effect of a single atom is. 

So, if I keep all other thing constant then what is the best dk and yTk that should 

approximate this particular factor let me call it as E. So, we can compute it because 

everything is given in your in your hand at this stage you have the input data vectors, you 



have the set of atoms that is the safe suppose you are doing iteratively. So, K - 1 th set of 

atoms you have also the sparse representation in the previous K - 1 th sparse representation. 

So, you can find out what is the value of this error of approximation using except K th 

atom this is an error approximation. So, the error can be this minus this. So, if I can update 

dk and y T k such that it is close to e then my error would be minimized. So, that is a idea 

and that is what this algorithm does that keeping other transfixed. So, it gets E k. 

So, to do that what we can do? We can perform the SVD of E k. So, this is I am mentioning 

as E K and this is what is written. So, let me rub the my writing. So, if I perform SVD of 

E K and then you know that with singlar value decomposition you get set of or thermal 

vector column vectors of U and V and considered the columns of U the first column of u 

with the maximum singular value and column of b of the same maximum singular value. 

So, you take the column of U and you can normalize it that is what is your d k and the 

maximum singular value into the column of V we will give you the y k T k that 

representation that could be 1 possible close approximation it is not exactly equal to E K. 

It is a best approximation of rank 1 approximation from the theory of approximation of 

matrix using this kind of singular value decomposition. 

Now, this is one best representation, problem here this that here you are not ensuring that 

y T k of that coefficients would be sparse, so this is a problem that. So, as I mentioned we 

can consider 1st column of U as d k and the 1st column of V multiplied with the singular 

value d 1, 1 which is the maximum singlar value as y T k, but the column vector this 

column vector may not be sparse. So, what we should do in that case? 
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||(𝑋 − ∑ 𝑑𝑗𝑦𝑇
𝑗
) − 𝑑𝑘𝑦𝑇

𝑘||2 

So, this is a tree that we can enforce sparsity by considering only those samples of the 

input which has nonzero contributions towards d k; that means, I have nonzero coefficient. 

So, choose only samples from x which have a nonzero component along d k and from there 

you can reduce the error matrix Ek to E kR. So, you are only considering those input 

samples related to that only and from there you can rewrite the equation. And, you can get 

E kR you can get the reduced representation of the row y R k and that you can use the once 

again singular value decomposition of E k R and then update d k and y T k from there. 

So, you can repeat for all dj S and update obtain the updated d and y in this form and you 

should repeat till repeat this thing till convergence. Actually convergence like K means 

clustering here also the problem here that it can get local it can start at a local optimum 

point in this case. So, performing SVD since you are performing this singular value 

decomposition K times for K atoms in each iteration we call this algorithm as K SVD. 



(Refer Slide Time: 30:53) 

 

So, finally, if we like to give the overview of this algorithm from total perspective at your 

input is x data points sorry n capital N data points and represented by this set X or which 

can be also represented by a data matrix X and your output is your K number of atoms of 

the dictionary D and also the sparse representation of each input sample Y. 

So, the first step is that you have to form an initial dictionary of K atoms and that any 

method you can use K means clustering can we also be used, then obtain an initial sparse 

representation y using any sparsity algorithm. So, you can use K means clustering for that 

or you can use orthogonal matching pursuit for this sparse representation, then you iterate 

for updating j th atom and sparse representation associated with this atom and you go on 

to in this iterations till there is a conventions. 
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So, there are some applications of the K- SVD algorithms I mean it can be applied for data 

compression there are various image processing operations where denoising is applied. 

Actually the idea here is that since once again you have factorized the input data you only 

retain those factors which are important and where the coefficients are negligible then you 

can reject it. By doing this things you can compressed data, you can denoise data, you can 

deblur data. The other applications that kind of computation could be you can learn 

dictionaries of different levels of representation of a signal. 

For example high level representation and low level representation and then if you 

establish the mapping between two dictionaries that it can give you an algorithm for 

increasing the resolution of signal. So, super resolution is that task which is called. So, 

mapping of learn dictionaries can be used in this case. In painting also another task of 

image processing where you take out some area and you feel that area by looking at the 

content of the image. So, that the discontinuities of extraction of the object from the image 

is not felt by everyone. So, they are also this kind of dictionary learning and mapping could 

be used. 
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So, let me summarize the topics what we discussed under the title of dimension reduction 

and sparse representation. So, in dimension reduction we discussed about the technique of 

principal component analysis and also a technique Fisher’s linear discriminant with respect 

to classification task. 

So, far principal component analysis the objectives are to represent data in a minimal 

subspace and it involves we have seen it involves co ordinate transformation, it chooses a 

direction maximize in variance of dominance component and it decorrelates data across 

different dimensions. Whereas, in Fisher’s linear discriminant the task was to data project 

the data in a 1-D subspace and then use it for classification and this projection itself gives 

severe linear discriminant function. 
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And, in spare representation we have discussed about different pursuit algorithms like 

matching pursuit, then orthogonal matching pursuit, then basis pursuit we have given just 

a problem statement, but we did not discuss the algorithmic steps. And, then we also 

discussed technique for dictionary learning and using it how to derive sparse representation 

in particular we discussed about this algorithm K- SVD. So, with this let me stop and this 

is the end of this particular topic we will start a new topic in my next lecture. 

Thank you very much. 
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