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 In the previous lecture, we discussed about the computation of principle component 

analysis and how we can find out the lower dimensional representations of data points, 

which are represented in a particular space. Now, let us consider what are different kinds 

of applications those are possible using PCA. Now, I will consider three major applications 

here. 

So, one of them is a data compression. As you have already seen directly that, actually you 

do not require that many dimensions to represent data, that itself gives a gives an efficiency 

of data representation, it requires less storage for representing data. So, it provides an 

optimum set of orthonormal basis vectors for a set of data points. Because, we have seen 

in the case of image transforms, that ortho normal basis vectors they are very convenient 

to transform any data point into another space, and if your basis vectors are properly 

chosen, then you can reduce the redundancy of that representations. 

So in PCA you have that advantage actually it is optimum set of orthonormal basis vectors, 

which will give you that kind of transformation, but it is data dependent that is one issue 



here. So, for every set of data points you need to perform it is analysis, perform this 

analysis and then compute a new set of orthonormal basis vectors, which is not very 

convenient from the point of view of data compression. Because with the compressed data, 

then you have to also convey this information of orthonormal basis vectors which is an 

overview for this.  

However, and these basis victors they are called ‘Karhunen-Loeve’ basis or the transform 

is called Karhunen-Loeve transforms which is an optimal representation of data as I 

mentioned. In fact, many standard basis vectors, they can be shown as eigenvectors of 

certain statistical representation of signals or images. 

For example, type-2 DCT basis vectors are shown as it is approximately the eigenvictors 

of 2-D matrix with j, kth entries as r|j-k| as it is shown here. So, these are it represents the 

correlation between adjacent samples say j and k. So, if j and k it is deviates too much 

from that location it, then it is not it adjutancy is less and then the correlation should be 

less. 

So, because r is a value which is less than 1, so as the j - k this magnitude increases it will 

be reducing this value will be decreasing. So, you have less correlations, but for high 

correlations it, so for adjacent samples it is expected they should be very highly correlated. 

Now, with this kind of data, it has been shown that the basis vectors are; that means, 

eigenvectors are similar to the almost similar to the type-2 DCT basis vectors. And, that is 

why type-2 o DCT is so, efficient for representing a large class of signals and images. 

So, as I mentioned covariance matrix for a very useful class of signals, where r is major or 

of correlation between adjacent samples and it is the value with me at to 1. So, it is trying 

to represent the natural images and natural signals with these kinds of statistics it is trying 

to model that part. 
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The other advantage of PCA or other applicants which is used also different applications, 

that it de-correlates the components. We have already seen in the example that covariance 

matrix they show that there is high correlations between different components for the 

original data. But, after performing PCA actually those correlations they are those 

correlations are largely reduced. So, it will be almost 0 in that case ideally it would be 0.  

So, that is how it de-correlates the components. So, one of the applications of this kind of 

using this property is that you can find out a new color space, that when color images they 

are represented in RGB color space they are highly correlated. So, there is a work I have 

given this reference here, it is the work done by Ohta Kanade and Sakai. So, what they 

did, that they took a large number of color images and, they performed PCA using the 

different blocks of the color images. And, then found out eigenvalues and eigenvectors 

and those eigenvectors that is the data that gives you the transformation new 

transformation space. 

So, in fact, they found that if I transform the color component using those eigenvectors in 

this way, that (R+G+B)/3, R - B is a second component and (2G-R-B)/2, there is a third 

component. Now, these are the principle components from their principal component 

analysis. 

And, as you can see this is nothing, but you are performing a color transformations where 

the fast one is indicating the intensity value and the other two they are the chromatic 



components. So, this can be, this has been obtained through this PCA itself. The major 

applications of PCA it is there when you have more number of components in images. 

So, color images they have only three components, but if I consider remote sensing images, 

these components could be very large there are different kinds of remote sensing images 

depending upon the bands they are using, depending upon the electromagnetic wave length 

bands they are using. So, multispectral, hyperspectral, ultra spectral, remote sensing 

images. And, there could be many bands, like multi-spectral it could be 10’s of bands, 

hyperspectral it could be 100’s of bands, ultra-spectral it could be 1000’s of bands. 

We have so many different bands so many numbers of bands and how to get an efficient 

data representation using those bands. So, what we can do? So, which means that at every 

pixel, it has dimension; data dimension is say if it is band number is N, data I mentioned 

is N. 

So there are, these kinds of dimensional reduction becomes very useful we can find out 

only those components after deduction. We can reduce those components which are de-

correlated and use those components to make the information analysis to analyze 

processing permission or to correlate with different ground truth or different ground level 

information. 

So, PCA is required to highlight the correlated information. 
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This is one example where I am showing that PCA component of a hyperspectral image 

and you can see that it starts from this, this is the PCA, which will corresponds to the 

maximum variance, maximum eigenvalue, you have lots of information there, a lot of 

details there and this is a minimum eigenvalue in this case it is actually 12th eigenvalue. 

Now, if the number of band is in this case it is not specified, I suppose the number of bind 

is 20 in this case. So, this is a minimum one. In fact, there is no such information also 

almost no details are visible here. So, that is the advantage of PCA, you can prioritize or 

you can give references to those bands which are having more informations. 

And, say this is a PCA 1, this is band PCA 2 band, second band, third band as you 

progressively go over the PCA components from say top to bottom and left to right by 

making these kind of scan. You will find finally, the details are slowly dying and it gets 

almost like a smooth region. And, so, you can use this components to find the, to analyze 

the information where if it is representing those information which right here. So this is 

what after component when (Refer Time: 09:22) much details are available and it removes 

that data redundancy in this representation. 
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The third application of PCA could be factor analysis and it highlights this decorrelated 

factors. So, you can find out the factors related to that even the color component what I 

have shown, it is trying to find out those factors, intensity factors, coma factors and this 



factor analysis this is very much useful for classification. For example, you consider 

eigenvalues for representing human, human faces. 

So, what we are doing here, we consider a large set of images of human faces crop to the 

same size and follow certain rules like it is not only just simple cropping, you are trying to 

maintain the different parts of the human face from the similar distances from the top. And, 

then you perform PCA and any arbitrary face you can express as a linear combination of 

those eigenfaces; that means, if you perform PCA you get eigenvectors those are called 

eigenfaces here. So, coefficients of linear combination it represent an arbitrary face. 
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So, this is one example that it is showing four eigenfaces. So, if I consider any arbitrary 

face at least I can represent by four-dimensional vector using this PCA, using these factors. 

And, then subsequently we can use it for classification. 
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So, this is the another applications, that we use those factor analysis, use those 

representation or any classification or high level processing like, you can this is a pipeline. 

So, you can perform factor analysis and then those representation can we use for 

classification. 
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So, I will be now discussing another type of dimension reduction. In fact, the objective 

here is more for the purpose of classification. In the previous slide itself I have shown how 

PCAs could be used for factor analysis and those factors could be used for classification. 



But, it is not necessarily that those representation of those factors are efficient for 

classifications particularly if you are considering linear discriminate functions.  

So, we will be considering those kinds of dimensional reductions, where this linear 

discrimination becomes simple for in fact, this is a simple discrimination it is you are 

reducing it to just one dimensional component. So, the objective of this linear 

discriminates and which is known as special linear discriminate by the inventor Ronald 

Fisher is a very famous statistician and it captures the direction of maximum variance of a 

dataset. 

So, for label dataset it does not capture the direction of maximum separation between the 

groups of data points of different levels. So, here the point is that PCA, it captures the 

direction of maximum variance for the data set not the vicious linear discriminate. And, 

but if I consider the dataset is labeled then it may not capture the maximum separation. So, 

I will be showing you with I will be explaining it with respect to this diagram consider 

there are two groups of data points, these are the labeled data points; one is shown by the 

triangles, another other groups are shown by ellipses by different colors. 

Now, the direction of maximum variance is a dotted line, that could be the direction, along 

that directions all the projections of these data points, they will have maximum variance. 

But, if I take the projections as you can see here that within these intervals the projected 

data points there they are intermingled. So, they are not well separated. So, they cannot be 

segregated using simple interval rules, they cannot be discriminated by that rules. 

But whereas, if I consider another direction say this is a new direction another directions 

and if I take the projections. Now, you can see that all the projected points for this group 

they are lying in this within this interval and all the projected points from for these group 

they are lying within this interval along this direction of projection along that particular 

direction. So, they are well separated. 

And, as it; so, this shows direction of the principal component is not really providing you 

the good separations between data points. So, as we mentioned it is well separated, but not 

along the direction of principal component. 
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So, let me explain that what is the competition problem that involves in this particular 

analysis; Fishers linear discriminant analysis.  

So, consider a set of data points as we have considered in the previous cases also. And, 

then out of those there are N1 data points which are in class w1. And, there are N2 data 

points which are in class w2. So, naturally we consider that N1+N2=N which is a total 

number of data points. And, now you consider a line with direction u, because our 

objective is to get a direction where this separation could be maximum. So, we should 

consider projection of data xi on u. 

So, the projection can be operation can be expressed as a dot product of two vector xi and 

u or in the matrix representation, it is xiT.u matrix multiplication of xiT and u. And that 

would give you the projection of data point yi, it is nothing, but a 1-dimensional sub space, 

which represents this data so, all the points around that lying on that line. 
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Now, we are trying to measure, what is how the projected data is separated? Because with 

that major then we can formulate a problem for maximizing that measure to get it well 

separated data. So, in this case let us consider mean of data points in class w1 is m1, and 

mean of data points in class w2 is m2. And, projection of this means along this direction 

u can be computed as projection of mean vector along u that m1
Tu and m2

Tu 

So, figuratively we can show here that my1 and my2 and one of measure of separation could 

be the separation of these two means; that means, how far there, we want this measure 

should be no large, this value should be large per well separated two groups. 

So, if you consider the difference absolute difference between these two values, that would 

give you a separation measure, but the problem here is that it is not capturing the variance 

of data. So, some data could be very well spreaded, very largely spread it, in an area and 

some could be very closely groups, closely spaced and after projection. So, ideally what 

we would like to have, ideally you should have the data points they should be closely 

spaced around mean. And, they should be largely separated. Then only those kinds of 

measures I mean those are the desirable situations desirable cases for this projection, but 

that is not captured by simply by the value D. 
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So, what we do in that case we normalized this D by a factor proportional to class variance. 

So, in fact, we call it this factor scattered. So, scatter of data belonging to class C is defined 

in this way it is on the projected space.  

𝑠2 = ∑(𝑦 − 𝑚𝑐)2

𝑦∈𝐶

 

So, it is nothing, but as you can see, it is a sum of mean square of mean deviations from 

the mean from the mean of the data points. And, it is a proportional factor with variance, 

because it is nothing, but class variance product of class variance and number of samples. 

And, as I mentioned the m c here represents of the mean of class C and small s square is a 

scatter. 

So, the measure of separation a good measure of separations could be that  

𝐽(𝑢) =
𝐷2

(𝑆1
2 + 𝑆2

2)
 

And, our objective is to maximize this value J(u) with respect to get a direction and so, 

scatter of projected samples should be small. 
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Let us define also scatter matrix of the original data. So, scatter matrix of sample of class 

C in the original space that is also defined in the same way. So as you can see it is the 

multidimensional space. So, earlier we have only one-dimensional space sub space for 

projections. So, we have used standard definitions of variances kind of definitions; that 

means, square deviations, but now you have to use the corresponding outer product of this 

matrix to denote a scatter matrix. So, this is represented as, as you can see  

 (Refer Slide Time: 20:33) 

 



So, within the class scatter matrix, that is defined as scatter matrix for S1 and S2; sum of 

S1 and S2 that is within the class scatter matrix. So, each one for S 1 you have to consider 

once again that definition; that means, suppose for S1, we had m1 as the mean. So the 

vector (𝑥 − 𝑚1)(𝑥 − 𝑚1)𝑇 and sum of if I consider there are ith samples. So, these ith 

component and if there are N1 samples in S1.  

So, we can show how it is related with this within the class scatter matrix. So, this can be 

written as in this form. So, you can see that this is what is the projected sample of x along 

the direction u. So, we can write uTx; similarly, this is the definition of this is a projected 

mean of the samples along y along direction u. So, it is uTm1. So, this itself can be written  

𝑠1
2 = ∑ 𝑢𝑇(𝑥 − 𝑚1)(𝑥 − 𝑚1)𝑇𝑢

𝑥∈𝑊1

 

So, we can write in this way you can simplify this algebraic form and you can write in this 

form. You can note here actually since it is one-dimension. So, whether I put the transpose 

here or here does not matter. So, we have taken the convenient form for the sake of 

derivations for the sake of the final derivations. So, we can see that from here you can take 

out u transpose u outside and this will give you the scatter of the original sample for class 

W1.  

And, this is the reason yT here instead of taking u transpose a minus this could be as 

transposed and you could have taken this also. On the other hand we may and (Refer Time: 

23:17) this is also correct. So but, the advantage of this notation is that, then we can bring 

the scattered matrix nicely within this uT and u in this form, we can get it in this form. 

And so, from here we can see that a small s1
2 is related with the scatter matrix of that class 

by this explanation. So, s1
2 is nothing, but uTs1u. Similarly, s1

2 would be uTs2u and if I add 

them finally, the both S1
2+S2 square can be written as uTSwu, where Sw is the within the 

class scatter matrix as we have defined. 
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Between the class scatter Matrix; that is another definition. Now, this is the scatter matrix 

formed by the means of those classes. So, this is how the definition is there. So, SB= (m1-

m2)(m1-m2)
T, it is the difference between two mean vectors. So, difference vector of means 

that is defining this scatter matrix. And, here also we can show that the separation is related 

with this. 

So the D2 which is nothing, but the square deviation of two projected means that could be 

written in this form. Once again conveniently we have used the outer product from 2 to 

outer product matrix representation for showing the square of a one- dimensional term and 

this could be represented as  

𝐽(𝑢) =
𝑢𝑇𝑆𝐵𝑢

𝑢𝑇𝑆𝑊𝑢
 

Now, this part is nothing, but this is what is SB and so, you can write it in this way and that 

is related with D2. So, finally, we can rewrite this optimization function as it is to maximize 

these factor J(u) which is 
𝐷2

(𝑆1
2+𝑆2

2)
 this could be re written as 

𝑢𝑇𝑆𝐵𝑢

𝑢𝑇𝑆𝑊𝑢
. 
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So, this is the problem of optimization, that you have to maximize it, once again u should 

be unit victor that is a constraint. 

So, u should be such that it can be shown that  

𝑆𝑊
−1𝑆𝐵𝑢 = λ𝑢, 𝑆𝑊 𝑖𝑠 𝑖𝑛𝑣𝑒𝑟𝑡𝑖𝑏𝑙𝑒 

So, I am not giving you the divisions I am providing you the final solutions that u is the 

eigenvector of these particular matrix. It is like an eigenvector solution 𝑆𝑊
−1𝑆𝐵 and if we 

compute the eigenvector there. And, since now you want maximization which means you 

have to consider the maximum eigenvector corresponds to the maximum eigenvalue. 

So, and one of the thing is that interestingly that SBu it has eigenvector along already (m1-

m2), this can be shown easily, if I consider this particular expansion of SB. So, this is 

nothing, but SB. So, this part as you can see that this is the dot product of the difference 

vector with respect to u and we should be some scalar value. So, this is some scalar value 

k. 

So, finally, this expression is nothing, but it is a vector this is some scalar term this is 

nothing, but a vector m1 - m2. So, the eigenvector of SB is also m1-m2. So, in that case 

the solution of 𝑢 = 𝑆𝑊
−1(𝑚1 − 𝑚2), that is what is your solution and, in this way you can 

get the direction where you can get the maximum separation of projected samples; this is 

how the Fisher’s linear discriminant works. 
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So, let me explain it with respect to an example consider a set of data points and now we 

are considering labeled set of data points. So, we have I show given you 2 such sets X1 

and X2 and we perform linear. So, we have to perform linear discriminant analysis or to 

get the optimum direction or FLD actually Fisher’s linear discriminant analysis to get the 

optimum direction.  

And, we should check also the separability in the line of projections. As an alternative also 

we will perform PCA on the whole data set, because PCA does not consider class 

information, it considers the whole data set and get the dominant principle direction and 

check the separability of the projected points on it.  
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So, for a linear discriminant analysis or performing here Fisher linear discriminant, we 

consider this representation of data into two matrixes X1, 1 group of data all column 

vectors are data points X2, other column vector are here also column vector data points 

per group 2. 

So, mean of X1 is given this that is what is m1 and mean 2 is given this, that is what is m 

2 in our notations we have discussed earlier and this is what is your scatter matrix for the 

X 1. So, S1 is a scatter matrix for S1; similarly, you computes scatter matrix for X2 S2 

and we within class scatter matrix can be represented. Now, this is a definition of S1, which 

we already we have discussed. So, within class scatter matrix is S1+S2, which is given 

this. And, now the solution you have to take the SW
-1 and then multiply that with m1-m2 

that would give you the direction. 

So this is what is your u, SW
-1(m1-m2) and it could be found that u value is given this, it 

could be unit vector also it could be any vector, because it is just projection. So, magnitude 

of the vector does not. 
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So, the separability if you would like to study you take Y1 = X1
Tu. So, you are taking the 

projections of all data points in X1 with respect to u. So, you can perform all these 

operations simultaneously using these matrix multiplications. Similarly, you consider 

projections of all data points of X2 with respect u. 

So, you will get them as column vectors there are three data points here. So, these are the 

projections for Y1, these are the projections for Y2. And, you can see that their intervals 

are well separated, because the range of Y1 is 19.31 to 22.2 whereas, range of Y2 is 5.43 

to 9.55 and they are well separated. 
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Whereas, if we take principle, if you perform principle component analysis on the whole 

data set which is represented here by the matrix X all column vectors are data points and 

you have considered union of data points of X1 and X2. So, part principle component 

analysis as we did earlier, first we compute the mean vector S bar, then you compute the 

covariance matrix, the variance of data. 

So, sum of diagonal elements that would give you the total variance of the data. And, if I 

perform the Eigen; compute the eigenvalues and eigenvectors in order of there, values I 

am showing here. So, the maximum eigenvalue is 72.96 and eigenvectors corresponding 

eigenvectors are this e1, e2, e3 and we are interested on finding out the directions of 

maximum eigenvalue or maximum variance. So, this is your principle component direction 

of the principle component is given by e1. 
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So, if I take that direction and check the separability of projected samples so, you perform 

the same projections on that direction and these are the values we will get. We will see 

that at least there is one sample this is the (Refer Time: 32:14) example. So, I mean it 

approximately it is good well separated, but there is at least compared to the previous one, 

one sample is here 13.98, which lies in the interval or very close to the interval of the data 

points of Z 2. 

So, the separation is not that much, it is not really (Refer Time: 32:38) overlapping in this 

sense here, but it is very close to that integral. So, that is it shows that the utility of fishers 

discriminate analysis. So, with that let me stop here and I will continue this topic in the 

next lectures. 

Thank you very much for listening to my talk. 
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