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We are discussing about artificial neural network and particularly it is a multilayer feed 

forward neural network, that we will be considering and this particular network will be 

used to model a classifier. So, let us see how we can model a multilayer feed forward 

neural network. We will be concentrating on a latest model particular neuron of a layer or 

a particular layer which means let us consider a jth neuron of ith layer.  
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And so, to model this neuron it has its input weights. So, you consider that a weight is a 

vector and as it is connected to all the outputs of the all the neurons of previous layers. 

And, if I consider that number of output is given by ni-1. So, where ni-1 is a number of 

neurons at (i-1)th layer so and the bias is considered it as wj0
(i). So, this is the dimension of 

input to this neuron which means also the number of neurons in the output layer for a fully 

connected network.  

And, as I mentioned dimension about output at the ith layer which means that is a number 

of neurons at the ith layer. So, the output of the neuron can be described in the 

mathematical form in this way, that it is considered first to take a net input from its input. 

That means, X(i-1) is actually the vector generated by (i-1)th layer of dimension ni-1. Now, 

you have the product you have the weighted combination of this input.  

And, then it is added with a biasing term which has been considered here and then that 

becomes a net input to the function which will be a non-linear function which will be 

generating the output response. 
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So, if I consider the input output relation in the ith layer then that can be described in this 

form, you have in the ith layer you have once again ni number of output neuron. So, for 

each one there is a weight vector which is connecting all the neurons of the previous layer. 

So, this is how this relationship can be expressed as you can see that each input with it 

weight vectors, it is multiplied is it is making a weighted sum with respect to the 

components of the previous layer and then it is generating the output of the ith layer. 

So, note that the dimension here is of ni this output is n i, this is a dimension and these are 

the biases. So, we can express in brief we can note denoted that this is a finally, this is a 

weight matrix of at ith layer and this is corresponding the bias vector at the ith layer. So, 

these are the two parameters which we are related to the ith layer. 
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So, the input output relation can be described to in this form as we can see that in a 

particular block diagram we have explained here. So, given an input then from this input 

layer use this parameters W1b1 as described, you generate the output for the next layer. 

And, it in this way you propagates the output to the end of this output layer to the input of 

the output layer and finally, you get this output. And, at each layer the description of the 

parameters is in this form, there is a mistake here. It should be ni as per make our 

description should be align, similarly it should be.  

𝑌(𝑖−1) = 𝑓(𝑊(𝑖)𝑋(𝑖−1) + 𝑏(𝑖)) 
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So, in short the model can be considered the whole set of parameters, see all the set of 

parameters they define, the collection there are the symbols parameters as it is represent 

the whole collection of parameters. So, in a model you have the parameters are defined in 

this model and it has its corresponding input output relation following the functions of the 

neurons as we discussed before. And, at each functional block this is how it is processing 

the input. 
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So, when you considered an optimization problem, we are trying to model a neural network 

in such a way that it satisfies the input output specifications which means that if I give you 

an input output specifications in that forms of Xi, Oi and these are the samples of n samples. 

So, you have to find out W such that it produces Oi given input Xi for all i. So, this is the 

optimization problem and we can use the same gradient descent approve a method to solve 

this. So, we define an error function which is a defined in this form here.  

You can see that it is considered the sum of mean square error, it is basically mean square 

error given the output and given the predicted output of from the model which is expressed 

as F (X;W). So, this is a predicted output and this is the actual output. So, the square of 

this deviation is a single observation and then average over all these observations will give 

the mean square error. So, this error has to be minimized. So, you have to find out that W 

which minimizes this error. So, once again we can apply the same gradient descent 

technique.  

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒: 𝐽𝑛(𝑊) =
1

𝑁
∑ ||𝑂𝑖 − 𝐹(𝑋𝑖; 𝑊)||2

𝑁

𝑖=1
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So, that is what we can do here. So, the procedure is similar, we can start with an initial 

weight W(0), then we update W iteratively. So, it is weight means collection of weights as 

we have described the collection parameters, it considers weights of weights and biases of 



every layer of the artificial neural network. So, the corresponding update scheme can be 

shown in this form. 

𝑊𝑖 = 𝑊𝑖−1 + η(𝑖)(𝑂𝑖 − 𝐹(𝑋𝑖; 𝑊𝑖−1))∇𝐹(𝑋𝐾; 𝑊𝑖−1) 

So, η(i) takes care of all the scaling factors here and as we can see that when you are doing 

derivation of this particular function with respect to W. And then of course, you have to 

compute the derivation of F gradient of F with respect to W and you can apply once again 

stochastic gradient descent instead of instead of considering the O all the samples at it 

together.  

That means, instead of considering the sum you can simply use a single sample like the 

previously what we have done and we can immediately update this weights and continue 

doing for every sample. And finally, when weights are getting you know converged; that 

means, there are a little changes in the values of weights after updation then we can stop. 
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So, computation of gradient itself is a task that we need to do it here and here let me first 

discuss with respect to a single neuron or single perceptron. So, we can apply the chain 

rule very effectively. So, we know what is a chain rule, let me explain that say; this is the 

corresponding functional description that. So, this is an input here and you have 

corresponding weights. 



So, this is the net input finally, after considering weighted combination then adding a bias 

term and then next process next part is that we have to this becomes an input to a non-

linear function f. And, then it produces output O and your error function, if your target 

response is t then error function in this case we considered as (t-0)2. So, this is a square 

error that is that we are considering. 

 So now, if you would like to perform you are interested here, you need to compute the 

derivation derivative of E with respect to individual weights because, we are trying to 

update the weights. So, how this particular response varies that we need to find out, that 

gradient and you should move towards or how it is affecting this error.  

So, you should move towards that direction which will be minimizing the error; so, let us 

take us gradient directions. So, how do you compute it? Now, by applying chain rule what 

we can do at this part we can compute  

∇(𝑊) = (
𝜕𝐸

𝜕𝑤0
,

𝜕𝐸

𝜕𝑤1
, … ,

𝜕𝐸

𝜕𝑤𝑛
) 

𝜕𝐸

𝜕𝑤𝑖
= −2(𝑡 − 𝑜)𝑓′(𝑧)𝑧 

So, that is how the chain rule is considered, let me give you the corresponding you know 

summary here also. So, we need to compute as we mentioned, we need to compute all this 

gradients. 
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And as I was telling you that all these components we have to compute. So, you just 

multiply all this three things so, you get the corresponding 

𝜕𝐸

𝜕𝑤𝑖
=

𝜕𝐸

𝜕𝑜

𝜕𝑜

𝜕𝑧

𝜕𝑧

𝜕𝑤𝑖
 

Now, let us consider a particular form of f(z), this is a sigmoid function. So, if I take the 

derivative with respect to z, it will look like this.  

𝑓′(𝑧) =
1

1 + 𝑒−𝑧
(1 −

1

1 + 𝑒−𝑧
) 

Now, incidentally this can be expressed in this form and which is nothing, but f(z)(1-f(z)). 

So, this is one interesting simplification, if you consider only sigmoid function. So, 

sigmoid function has this property and in many cases in neural networks sigmoid function 

is used and this particular property is effectively used in computation. Yes, if I want to 

compute 
𝜕𝐸

𝜕𝑥𝑖
 because, we will see later on also that in some cases we need to compute that 

and then also we can apply chain rule. 

So, you will find that the expressions would be considered here. The interesting part here 

is at the whole computation can be done using analytical methods. You do not have to do 

any numerical since you do not have to use the numerical simulation to compute. So, 



sometimes for a complicated function what we observe that we give a change to the input 

and observe the change in the output and then use the ratio of those changes as a derivative. 

But, in this case we can directly compute by giving the functional by giving the values at 

that point. So, only values of x w or weight centre weights and inputs they will be only 

required to compute this particular function. So, once you compute the functional value, 

then you can compute also the derivative using those values only. So, you can compute at 

a point that is what is advantage of this particular method.  
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So, when you would like to compute the gradient of a feed forward network, multilayered 

feed forward network; we apply the same chain rule. But, in this case since there is a 

layered computation now, the chain rule has to be also applied following that layered 

architecture which means that we should compute from output towards the input. So, you 

should compute all the derivatives from the output end and then you should proceed 

towards input and compute to successive derivatives.  

So, which means from output layer to input player and we can compute the partial 

derivatives of weights at (i-1)th layer from the corresponding derivatives of the ith layer. 

We will see how we can do it. 
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So, let us consider this particular concept here, we would like to compute the derivative 

with respect to this weight; you note that here in my notation 2 denotes the layer. So, this 

is a second layer and 3 denotes the jth neuron of the previous layer. So, this is a third 

neuron of the previous layer and here are the weight 3 1, it is a connectivity of the third 

neuron of the previous layer to the first neuron of the second layer. So, previous layer is a 

here so, that is a notation we are using here. 

Similarly, these are y’s are shown as outputs here. So, actually I have shown all these 

outputs which are affected by the change of this weights. So, this response is affected by 

the change of these weights. So, this is generating, this y4
1 becomes an input to this 

particular neurons. So, it is acting like an input, but any change of this weight will affect 

the changes here. So, which means I need to compute here for example, deltaEdelta o then 

any change here will affect outputs. So, I need to compute delta o delta y 2 3; that means, 

with respect to this. 

Similarly, I need to compute the derivative with respect to this, then I need to compute this 

derivative of these with respect to this. So, in between there is a functional block here so, 

we will have to consider that. So, in this way we have to compute. So, only these 

derivatives are to be computed and then you can find out you know this one. 
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So, this is a relationship with respect to this and you note that the computation of  

𝜕𝑦1
(2)

𝜕𝑤31
(2)

= 𝑓′(𝑧1
(2)

)𝑦4
(1)

 

So, this is single neuron, this is the output.  
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So, we will continue this computation once again. So, it shows at the top these are the 

layers 1 2 3 4 5, these are the layers and then it is this computation is carried out in this 

form. So, ∆𝑤31
(2)
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We will be discussing about a particular simple rule by which the gradients can be 

propagated from output towards the input direction and that rule is called delta rule. So, 

let me explain this particular rule by which can organize the computations very nicely. So, 

we measure the error as we discussed that as a square of deviation from the target t to the 

at response given by the network for a particular input and particular values of weights 

parameters of that network which is o. 

So (t-o)2 is a error and we would like to find out compute the gradient to of this error with 

respect to a derivative of error E with respect to some parameters. For example, in this 

diagram we are considering the parameter w31. So, you note here in my notation this is a 

weight and you can see this 3 is a third neuron in the previous layer and 1 is the first neuron 

of the current layers. So, the previous layer of neuron this is the first layer and this is a 

second layer. 

So, our convention is to denote the weight connectivity from the third neuron, output of 

the third neuron of the previous layer to the current layer is in this form. Similarly, the 

output of the third neuron of the previous layer which is the layer 1 is denoted here y 3 1 

and also you can see output of the first neuron of layer 2 is denoted in this form. Similarly, 



output of layer three first neuron of layer 3 is denoted here of layer 3, it is also denoted 

that is the second neuron in this form. 

And finally, this is of course, the fourth layer and only one neuron is there and fifth layer 

is just output response which is redundant and we are not denoting with any other symbol 

other than o. So, this is a convention that we are following and we are showing all the 

necessary responses which are affected by the change of weights w31. So, when we 

compute the gradient with gradient of error E with respect to w31 this weight then these 

are the variables which will play a role in determining this gradient.  

So, let us find out how this gradient value is dependent. So, you can see here we would be 

like to measure this value and which will give me the corresponding updates of the weight 

w 3 1 parameter. And so, you applying the chain rule. So, first we compute the gradient of 

E with respect to output o, then gradient of output o with respect to this gradient y1 and 

then subsequently gradient y 1 2.  

So, this is that value, similarly these two added here. So, because of the linear operations 

this is other value and finally, when you are computing the gradient with respect to w 3 1, 

it is t y 1 2 with respect to w 3 1 2. So, these are the components which we need to compute 

or which these expressions which we need to find out given this particular responses at 

this instance. So, in this case we have already discussed how to compute the gradient of y 

1 3 with respect to y 1 2. 

Suppose we know the gradient of output o with respect to y 1 3 and that is we are calling 

that is a value delta 1 3. That means, this is the accumulated gradient till this point, till the 

output of the first neuron of third layer we denote in this fashion. Similarly, the gradient 

at this point will be denoted as delta 1 delta 2. So, it is delta 2 3 so, that is a gradient at this 

point, that is my notation and that is the definition of delta. 

So, delta is the accumulated gradient till a output till the output of certain layer and the 

corresponding convention of writing delta in this fashion. Similarly, you can write the 

gradient changes along a edges also particular a edges, we will see how we can do it. So, 

let us expand this particular quantity; that means, gradient of y 1 3 with respect to y 1 2. 

So, let us explain this particular quantity which is the gradient of y 1 3 with respect to y 1 

2. 
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So, these are how they are related, since in between you have the corresponding non-

linearity which is f z and that would play into role. So, we can write it as the we can write 

this fact as say f dash z and then we know that there is a weight which is also connected 

here. So, it is since it is a linear combination of this. So, if this weight as per our convention 

it is w this is a first neuron. So, this is 1 and this is also 1 because this is the first neuron 

of third layer and this is 3. 

So, according to our convention this is weight so, this is linearly related. So, this is a scale 

y 1 2 is scaled by w12 and then it is contributing to the net input which is a again 

determining the y 1 3. So, we can write delta y 1 3 delta y 1 2 as f dash z that is also at that 

point. So, we will see whether we have taken any conventions. So, we can write it also see 

f dash z 1 and it is layered 3 f dash z 1 3 into w 1 1 then 3. So, this is the expansion, 

similarly you can do this expansion and later on we will see how the chain rule is defined 

with respect to this. 
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So, let me proceed. So, this is what as I mentioned we will compute this part and similarly 

we will compute the other one and this will expand. So, as I mentioned this is expanded 

into this form and this is expanded into this form, that is coming from here. This one is 

coming from here and this one is coming from here. Now, we define the delta 1 1 as I was 

mentioning delta 1 1, like I have defined earlier the delta this is delta 1 3 and at this edge 

this is delta 1 1 3 and that gets multiplied with w 1 1 3. 

Similarly, at this stage this is delta 1 2 3 and that gets multiplied with w 1 2 3. So, we will 

find out how this is happening. So, this is what; this is what is delta 1 1 3 as I have 

mentioned, this is getting multiplied what with w 1 1 3 and this is w delta 1 2 3 and this is 

getting multiplied with w 1 2 3. And, that would give me the corresponding here that would 

give me delta 1 2 so, this is the delta rule. So, if I write it so, we can define the delta rule 

in this fashion as I was mentioning that delta 1 2. 

So, this is what this is delta 1 2 is equal to then. So, this is added this is an this is equal to 

the weighted addition of delta 1 1 3 and delta 1 2 3 where the weights are the weights of 

the corresponding edges. So, that will be more clear when I show it here; so, this is a delta 

rule. So, once you get delta 1 2, similarly in the same way you can also get the delta value 

here. So, it means it has to be multiplied with f dash. So, from here it should be multiplied 

with f dash it should be z 1 2 and then you are computing actually the response of this 

point. So, it is delta y 1 2 delta 3 1 2.  



So, it is this multiplied by f dash z 1 2 into the y 3 1 because, when you are computing the 

gradient at this point in the multiplication factor with respect to this parameter will be this 

response. So, that is what we will be writing here. So, you can see that it is delta 1 2 

multiplied with f dash z 1 2. So, this is delta 1 2 this is f dash z 1 2 in that path and then 

you are multiplying it y 3 1, that would give you this quantity and which is used for 

updating this weight. 
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I think this is explaining this diagram explaining in a bit in a clearer way. So, what it is 

doing let me see, let me explain; see you compute as I mentioned delta 1 i at this point. So, 

which is the gradient accumulated gradient value from output to this point, see this is delta 

j i. So, in that you are computing all these accumulated gradient value and then it is first it 

is propagated. So, delta k 1 i is multiplied with respect to f dash z so, this is delta k 1 i 

similarly delta k j i this. 

So, you take the weighted sum of all this. So, you take the weighted sum that gives you 

there the corresponding accumulated gradient value from the output to this point; so, at 

this point. So, and next you will propagate in this fashion; so, it will again propagate in 

this fashion. And so, the grad great way the update of weight should be this particular 

know the delta E delta o into this because it is from the weight output response. So, this is 

our update, in this way weights are you know updates are computed at every branch. So, 

this is what is at its semi computing in this gradient. 
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So, the in this way you are computing the gradient of with respect to the corresponding 

weight, with respect from the gradient of the error and that is a how we get the gradient 

vector. And, then the algorithm follows in the same fashion that for each training sample 

you compute functional values of each neuron in the forward pass. And, then update 

weights of each link starting from the output layer using back propagation and then it 

should continue till it converges.  
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One of the thing we would like to you know mentioned here that when you are doing 

artificial using this model whether it is a classification or regression model. Now, you can 

see primarily it is a regressor, it builds a model to predict no functional value F x given 

input x. But, you can convert this model, you can use this model also as a classifier by 

appropriate encoding of classes; that means, your output vector would be those encoding 

of classes.  

For example, if you have a two class problem, you can consider a binary encoding. So, 

you can consider either 0 or 1 or you can also consider one hot encoding; that means, there 

are two neurons output neurons one of them will be 1, other will be 0. For the other class 

other will be 0 another is 1. In one hot encoding it is idea is that if there say n classes that 

could be represented by m such you know binary variables n bits and only one of them 

would be 1 for a particular class, rest will be 0. 
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It is necessary that when you design a classifier you should evaluate a classifier, 

particularly for a supervision supervised classification problem. So, we will discuss about 

you know some methods of evaluation, some measures of evaluation. Consider you have 

two class problems and there are positive and negative classes. Now, there are several 

possibilities after classification like here in this diagram in this table I am showing the 

classification what has been predicted by the model.  



So, you are seeing where it is these are the predictive predicted positive and predicted 

negative. So, it can predict other positive or negative. So, it could happen that the sample 

is actually positive and it is also predicting positive that would give you two positive or it 

is negative, but it is predicting positive. So, it is the class of false positive. When it is 

positive actually positive, but it is predicting negative then it is false negative and in the 

other way when it is negative actually, but it is predicting also negative.  

So, this is an desirable situation, this is true negative. So, this true positive and true 

negatives are desirable outcomes those numbers should be high whereas, these two 

numbers should be less. So, in a measure we use this numbers there are different measures, 

like if I consider accuracy of a classification we consider what is the total number of 

predictions which are true either positive or negative. So, it is true positive plus true 

negative by total number of you know samples which have been tested, there is there are 

other measures like precision and recall.  

So, in precision you see that what is a fraction of predicted positives are true and recall is 

what is a fraction of actual positives are true. There are other measures like sensitivity 

which is the same as recall, these are used particularly for the medical world. So, or we 

can considered it also true positive rate. So, it is true positive by actual positive and 

specificity is true negative rate which is true negative by actual negative.  

And, you can combine these scores two scores into one F score which is called harmonic 

mean of precision and recall so, which is has been defined here. So, higher the F score 

better is the classification, when you consider it in combination. 
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For a multi class problem we can use a confusion matrix where, once again you have you 

can I have shown here that they these are the true classes and this is the predicted classes. 

So, in the diagonal term if this numbers are high, those are the desirable outcomes. All 

other terms there are some kind of errors are there because, it belongs to actual class omega 

1, but your prediction is omega 2 or omega 3. So, the accuracy measure which means 

which will be sum of diagonal by total. 
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There are methods of you know testing the; testing the performance of a classifier. One 

method is called cross validation and once again it is applicable for supervised 

classification. What we do that we separate training and test data. Then we train network 

using training data and then evaluate using test data. 
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So, for k fold cross validation, we divide the data in k sets of equal size and we train using 

k minus 1 sets and test it with the remaining. And we do it for every set as a test set and 

take the average. So, report the average performance.  

(Refer Slide Time: 38:27) 

 



So, here we comes to the you know come to the end of my you know talk for particular 

topic. So, just let me summarize whatever you have discussed under the topic of 

classification and clustering. So, as we as you know that classification is the task of 

assigning a known category or class to an object whereas, clustering is a task of organizing 

objects into groups whose members are similar in some way. So, clustering techniques 

there are several clustering techniques we discussed like K means, K medoids or Gaussian 

mixture model. 
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And, for classification techniques we considered Naive Bayesian classification scheme, 

then K nearest neighbor classification scheme, linear discriminant analysis and finally, 

artificial neural network models. With this let me stop here and we will continue our 

discussion for our lectures of the next topic. 

Thank you very much for listening to this talk. 

Keywords: feed forward network, chain rule, back propagation, cross validation. 


