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Lecture – 04 

Image Transform - Part – II 
 

So, let us discuss about the second part of the Image Transform properties and in the previous                 

lecture I discussed how discrete Fourier transform can be generalized. And then we will see               

using those generalized discrete Fourier transform, we can derive also discrete cosine and             

discrete sine transforms for discrete sequences and they form a complete base; so you can get a                 

completely construction of those sequences. 
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So, to understand that fact let us consider a concept of symmetric or anti-symmetric extension of                

a finite sequence. As I mentioned for the case of discrete Fourier transform also that given a                 

finite sequence; you can define this sequence in the zone where in the zone of undefined region                 

as per your convenience, make that sequence having certain properties which will be useful and               



which will be convenient for performing transformation on the sequences; on those extend             

sequences. 

So, one such extension type of extension that is used in that is used for this purpose is symmetric                   

and antisymmetric extension. So, let us understand what this is. you know symmetric extension              

and what is antisymmetric extension. Now you can see this is an example of a symmetric                

extension, as this was my original sequence and here the center of symmetry lies at the end                 

sample of the original sequence itself. 

And we call this kind of symmetric extension is whole symmetric extension or whole symmetry;               

a given a sample 4 actually can see that we require another additional 3 samples and by                 

maintaining the symmetric symmetry of the sample values; we can create the whole symmetry.              

In the other kind of; no symmetry we can create that is called half symmetry, in this case central                   

lies separated with an interval of half of the sampling period or sampling interval from the end                 

sample; this is the point there is center of symmetry. 

So, at this towards its left you have 4 samples towards its right also we have 4 samples; so this is                     

called half symmetry. And for the antisymmetry we also similarly defined whole antisymmetry;             

in whole antisymmetry the antisymmetry, the center of antisymmetry lies at the at a sample value                

which is introduced; so this value should be 0. 

And then next of the values should be you know determined by the corresponding sequence               

original sequence; they should be negative of the corresponding sample value and this is a whole                

antisymmetry. So, you can see the total length of in this case in this definition; it is 4 plus this is                     

a value introduced 5 and then this is 4; so this is 9; this is a whole antisymmetry an example of                     

whole antisymmetry. 

Similarly, we can have half antisymmetry; so instead of introducing a 0 explicitly here; we can                

assume that center of antisymmetry lies in between half of the interval between these two               

samples. So, you do not require any additional introduction of 0; only the samples are inverted                

here and this is called half antisymmetry extension. 



Now, the significance of the this symmetric extension is that, if I make the symmetric extension,                

then you can observe of this function becomes even function if we consider this is the sample                 

value at the 0th index or x equal to 0 and it becomes also even function if your origin of x lies                      

here. And similarly here it would be odd function once again if your origin lies here and                 

otherwise in this case origin. So, now, as I was mentioning that given an original sequence                

actually, you have converted this sequence as even function and further if you consider periodic               

extension of this function; then you can apply discrete Fourier transform on this; some discrete               

Fourier transform. 

And then what happens that since it is an even function that transformation will require only                

cosine parts; so, you can have discrete cosine transform using this kind of functions here. And                

again you can reconstruct back using that discrete cosine transform and keep your observation              

window only on this interval. So, you get the original sequence back. 

So, in this way you get all the original sequence by just by using only cosine transforms.                 

Similarly, for odd functions it is sufficient to use only sine functions because for odd functions                

we have seen that Fourier transform is equivalent to application of only sine functions from the                

basis function set, here also only the sine functions can be used. 

So, that is what using this symmetric antisymmetric extension; we can have DCTs and DSTs or                

Discrete Cosine Transforms and Discrete Sine Transforms for any finite sequence. And that is              

the reason why do they exist and you find them in the text books and in many applications. So,                   

for even function it is DCT and for odd function it is DST. 
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So, this is what I mean there could be various kinds of discrete cosine transforms because you                 

have so many different varieties. you can have different types of symmetric or antisymmetric              

extensions at its two ends. And observe whether the sequence become even function or odd               

function and also you can use different kinds of discrete Fourier transforms from the definition               

of generalized discrete Fourier transforms. 

So, you can have different DCTs and different DSTs; so take this example suppose we have a                 

symmetric extension; whole symmetric extension both at the both ends, in that case we could               

observe that the functional values would be you know symmetric around this particular value.              

This is the end and this is the period that would be defined by this symmetric extension; if I                   

extend it periodically with this one, we will get a periodic value. 

So, this is the original function and using the whole symmetric extension at this end and also at                  

this end; you can identify this is the period, i.e, the minimum period that is formed by this                  

particular extension. And if the value was 4; number of sample was 4 you can see that length of                   

the period becomes 6. So, we will observe that how it affects the corresponding cosine               

transforms in this case. 



It is possible to have a sine transforms and if we apply simply discrete Fourier transform on this                  

extension will get a type I even DCT; whose expression is given in this form. You can say that                   

only the cosine basis function is used; cosine functions is used from the based on the basis                 

vectors. And you can see the period; period is 2N, but you observe the definition of N in this                   

case the value ranges from 0 to capital N which means there are ​N+1 number of samples. So, if                   

the value of ​N+1 is equal to 4. So, actual value of N is equal to 3 in this case. So, that is why the                         

period is 6 right;  

so this is how the type I even DCT is defined. There is a definition of also. This is for the                (p)α      

normalization operations for making it orthogonal and orthonormal when you are performing the             

reconstruction; they should satisfy this property, so you will have this particular definition. 
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So, similarly we can have other kinds of symmetric extensions HSHS. So, at both ends we have                 

half symmetric extension and if this is your original samples that is of length 4; then half                 

symmetric extension that both end will provide you a periodic signal of even function of length                

8. And if I apply the alpha that general discrete Fourier transform, when α=0 and that is               β = 2
1   

odd time discrete Fourier transform, then you will find it is a type II even DCT. 

And the expression can be given in this form and here you can observe that given N samples you                   

are generating a period of twice N. So, you have the following expression : 

(x(n)) (k) α(k) (n) cos( ), 0≤ k ≤ N  C2e = X IIe = √ 2
N ∑

N−1

n=0
x 2N

2πk(n+ )2
1

 − 1   

and this is a familiar DCT expression what you see in the text book and this is mostly used in                    

image compressions and video compressions. And if I say this is type II even DCT is by default                  

that would be considered as that discrete cosine transforms. 

And for discrete sine transform similar we can have antisymmetric extensions; like whole             

antisymmetry extension and given a 4 samples; you generate a period of 9, it should be (2N +                  

1). So, we will define the definition of N instead of starting from 1; we should consider 0 we                   



should ​say N=1, N-1​. So, actually your defining it with respect to ​N-1 samples and that would                 

give you the twice N period and this is what your type I even DST. 
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And for Type II even DST similarly, we have half antisymmetric extension and there also we are                 

applying this corresponding discrete Fourier transform and this is a particular transformation            

matrix that you will be applying there. So, you will get a type II even DST and Following is                   

expression for type II even DST . 

(x(n)) (k) α(k) (n) sin( ), 1≤ k ≤ N  S2e = XsIIe = √ 2
N ∑

N−1

n=0
x 2N

2πk(n+ )2
1

 − 1   

There would be many other DCTs and DSTs; in fact, since there are two ends and we can have                   

two varieties of symmetry and two varieties of antisymmetry. So, in total there could be 16                

different types of DCTs and DSTs and type II even DCTs is mostly used in signal image and                  

video compression. 
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So, in a matrix form we can represent particularly type 2 DCT for an example I am showing all                   

this transformation can be also expressed in the discrete linear transform what we discussed              

earlier. So, an element of the matrix that is element can be denoted in this form and this         k, )( n th           

matrix is also referred to as N-point DCT matrix which is a type II DCT in this case. 

And in this case, there are certain properties which are interesting and which are exploited in                

various developing different algorithms using DCT coefficients. One of this property is that :              

each row of this transformation matrix is either symmetric, we call the even row or               

antisymmetric. And following is a particular equations by which we are expressing this property 

(k, ) for k even  C (k, )N N − 1 − n  = C n  

                              − (k, ) for k odd  = C n  

and the transformation can be expressed in terms of multiplication with the column vector              

x  X = CN  



and you get the corresponding transformed DCT column vector and its inverse is also given in                

the following  form  

) C )(CN
−1 = ( N

T  
 

in this case it is orthonormal expansion; so you can just have the transpose operation. 
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So, one of the application is that; it can simplify the convolution operations; so what you perform                 

in the functional domain. Because, you can see that convolution operation the functional domain              

that becomes equivalent to multiplication operation in the transpose domain; when you            

considered the Fourier transform.  

So, this is the particular expressions as these are stage by which we can understand; that the                 

relation is that if I consider a function and if the impulse response of the system is h(t); then                   

convolution of impulse response with that function is equivalent to the product of Fourier              

transform of this function and Fourier transform of this impulse function. This property is called               

convolution multiplication property of Fourier transforms. 
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Let us consider how this property is reflected using discrete Fourier transform. In the discrete               

domain the convolution operation; linear convolution operation can be represented in this form             

instead of integrations now we have summations and these are shifted impulse responses; that is               

unit impulse responses along the corresponding functional domain at integral points. 

And the linear combination of all those shifted values will give you the convolutions as you see                 

that coefficients whose linear combination comes from the functional value itself. So, when you              

perform the linear convolution; the thing is that, we assume both of the sequence and also the                 

impulse response they are of infinite length. But it happens so, we are handling with finite                

sequence and discrete Fourier transform  is applied for a finite sequence. 

So, how do you consider this definitions, how do you we can modify this definition because it is                  

not necessarily the corresponding functional domain where the function is not defined in a finite               

sequence; it is not necessarily they have to be set to 0. If you set them to 0 it becomes equivalent                     

to linear convolution, but you can consider some periodic extension as we did for discrete               

Fourier transform definition itself. So, periodic convolution of two finite sequences is defined as              

convolution between two finite sequences with periodic extension. 



Same linear convolution and it can be observed that if they have same period that the periodic                 

sequence also will be of same period. So, with this definition; with this property we can define a                  

circular convolution. So, it is sufficient if we compute the periodic convolutions for a single               

period only, it need not compute in the whole functional domain itself. 

⍟h (m)h(n )f = ∑
N−1

m=0
f − m  

(m)h(n ) (m)h(n )= ∑
n

m=0
f − m + ∑

N−1

m=n+1
f − m + N  

So, in a circular convolution which is as I mentioned, it is a periodic extension and we can                  

compute only with the interval of from 0 to N-1. And if I apply this periodic periodicity                 

definition; then this can be broken into the two parts as shown above. This is the definition of a                   

circular convolution. The interesting part is that convolution multiplication property for DFT            

holds for the circular convolution. 

So if I consider the impulse response of a system and functional finite sequence both should be                 

of same length; take the discrete Fourier transform and take the product point wise at the                

corresponding coefficient wise take the product. Then, you will get also the transform             

coefficients of the sequence what would have been the output of the system if they are all                 

periodic extensions. 
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So, this is what is your is the property in the discrete Fourier transform domain. So, what about;                  

there is another kind of convolution with antiperiodic extension. Like periodic extension, we can              

have antiperiodic extension; in the antiperiodic extension first we perform the this antiperiodic             

extension over the functional domain that is with an antiperiod N. 

(x ) − (x)  f + N = f  

This is what it is defined antiperiodic function and if I do this antiperiodic extension; it is it is                   

also a periodic function of period N that is interesting.I I antiperiodic function does not mean it                 

is; it is not periodic. It is actually periodic, but the periodicity is now doubled you can check this                   

things; you can make an antiperiodic extension and we will see there is a periodicity of twice the                  

number of samples of the original sequence. 

So, skew circular convolution is defined with respect to this periodic values or we can say this                 

antiperiodic extensions. Because we will be again observing the convolved output only in the              

observation window of the original sequence. So, a skew circular convolution is defined in this               

form; you take the convolutions again from the linear convolution definition itself, but you apply               

the properties of antiperiodic extension; then you will get this expression. 
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So, using the circular convolution and skew circular convolution; we can find that there are               

different convolution multiplication properties those hold also in DCTs and DSTs. I will show              

you some of them for DCTs. For example, you take this case that you have two functions; one of                   

them you can consider as the impulse response say y and both of them of same period; of same                   

length. So, if you take the type I DCT of this one and type I DCT of this one; then if I multiply                       

and no that is that should be multiplied by this factor because of the definition of DCTs what we                   

have in this lecture following that this multiplication factor would there. 

And then you get your result in the transform domain itself; that is the type I DCT of the                   

circularly convolved output of these two sequences. Similarly, a type II DCT of this one and type                 

I DCT of impulse response will give you a type II DCT of the corresponding convolved result.                 

You should note that number of samples depend upon the corresponding type of DCT what you                

are applying. Because finally, there should be of same periodicity; so in this case we will have                 

N+1 samples and there are N samples because N sample define a DCT of 2N period and ​N+1                  

samples define it type I DCT of 2N period. 



So, that you need to be careful while applying this particular properties and type III DCTs have                 

these interesting property; where actually you can find the output is this, this properties applied               

for skew circular convolution. 

(Refer Slide Time: 21:20) 

 

So, whatever we have discussed in one dimensional transform; this can be easily extended for               

two dimensional transforms this discussion. If I consider our basis function in two dimension as               

a certain particular property; which is separability property; so they are separable if I can I write                 

this basis function into this two form; b (x, ) (x).g (y)}  B = { ij y = gi j  

that means, you can write it as a product of 2 basis functions as shown above; they are all                   

independent of independently they can be computed using a particular variable. So, this is an 1 D                 

basis function say product of two one dimensional basis function. 

If both of them are orthogonal; then you can see that this set of basis functions will be also                   

orthogonal and then we can reuse this one dimensional transform computation and we can              

express them in the following equation  



(y)( (x, )g (x) )λij = ∑
 

j
gj* ∑

 

i
f y i

*   

So, first we are computing the transforms with respect to the x; by changing the values or                 

sequence with respect to variation over x. 

And then we are considering the transform of say with respect to the value of y, we will see that                    

how this computation is reflected in terms of matrix operation. So, you should note here though                

in this slide; we have used the same notations for this two functions; they could be separate, only                  

thing is that both of them needs to be orthogonal to keep the orthogonality property of this basis                  

functions. 
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So, 2D discrete transform can be easily computed by using this separability property. So, let us                

consider the computation being this way say you can transform columns and then you can               

transform rows. Suppose, you have a 1 dimensional transform matrix B and there is an input.                

your input is a corresponding input which is given in terms of matrix ,that is your data.m × n  

So,first I can transform columns of this input data; that is the image in this case some                 ,  m × n   

image block. So, I will be transforming them columns; so, we know that dimension of each                



column is So, that is why we are use using the corresponding transformation matrix which  m               

deals with dimensional vectors; which is represented in this form and then each column is   m               

now is transformed into another columns. So, you are doing it for n such columns. So, you      m              

will find dimensional vectors transform columns and there are n columns; so this is a matrix   n                

you will get. 

After that what you can do ,you can now transform the rows of this matrix which means now you                   

have to take the transpose and then perform the . Since all rows are dimensional, so you           n × n       n    

have to use the -point transformation matrix here and then you can get the final no transforms     n              

of the two dimensional image of ​size.  m × n  

So, if I expand  I can write the whole operations in the following composite form.Y 1   

B (Y ) ] (B ) X (B )Y m×n = [ n×n 1
T T = Y 1 n×n 

T  
= Bm×m m×n n×n

T  

So, the whole operations can be described in this particular form and that gives me the 2                 

dimensional discrete form. So, this is how a 2 dimensional discrete form can be represented               

given the 2 dimensional input image we can use the corresponding transformation matrix             

towards its right and towards its left in this way and we can get the corresponding transformed                 

image in the transformed domain itself. 
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So, typical examples could be say discrete Fourier transform; we can also express this transforms 

using the summation operations because they are the basis functions here or the basis vectors 

here; they are separable, they are expressed in this form. And you can see that it is a simple 

extension of the discrete Fourier transform of what you had in the in your in the 1 dimensional 

case. And using property of separability, once again we can simplify this computation and when 

we express in terms of matrix multiplication; we have already defined the matrix representation 

of the transformation matrix of DFT. 

And we consider this is a ransformation matrix and this is a matrix; we are just       m × m         n × n      

denoting it by simple ​M showing it as ​m point discrete Fourier transformation matrix. So, this                

will give you the corresponding transformation of the image f. 
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So, one typical example it is shown here that now given this image; we can perform Fourier                 

transform and it will give me since it is in the complex quantity every transform coefficient in                 

the discrete Fourier transform is a complex element. So, it has its magnitude and phase at every                 

point; so you get two components of this transformation. And in this particular image you should                

note that if I apply Fourier transform, coefficient values would be very large and it is very                 

difficult to make them display. 

So, we have made them display well and also we have shifted the origin of the transformation                 

space. 
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So similar way like discrete Fourier transform, we can define also discrete two dimensional              

discrete cosine transform. These are same simple extensions what we had in 1 dimension and in                

the matrix representation; we have the similar representation what we discussed for when we are               

extending a 1 dimensional transform to a 2 dimensional transform. 
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This is an example of a DCT; so if given this input image, you have this discrete cosine                  

transform. In this case also you have scaling of the coefficient values and there are as I have                  

mentioned there could be 16 different types of DCT and DSTs this is just one typical example                 

which is type II even DCT that is shown here. 
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So, I will conclude this lecture by mentioning that why do we require image transforms? As you                 

can see image transform, give an alternative representation of image instead of representing the              

image in the functional domain itself, we are representing it in a different domain; it gives a                 

different insight of structure of images. 

And for example, if I consider the frequency domain representations using Fourier transforms,             

we get low frequency and high frequency components. So, it may become useful for providing               

more compact representation; you can use only a few transform coefficients to get a very close                

approximation of the functional representation or you can perform selective quantization of            

components, considering their effect on our perception. 

And those are used in the algorithms for image compressions, even video compressions. And              

sometimes many processing becomes convenient when we use this transform coefficients; like            



we have already discussed about filtering, there are operations like enhancement, restoration etc             

many other operations; where this transforms are useful. So, with this I end my lecture on image                 

transforms. 

Thank you very much for your patience and listening to my lecture. 

 


