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We are discussing about least squares line fitting and as we have considered that we have 

been given a set of data points and the form of the model in this case is a line, straight line 

given in the form of equation y=mx+c and the error term is defined as the sum of square 

of vertical divisions of the observed value from the predicted value, which is been given 

by the equation 

𝐸 = ∑(𝑦𝑖 − 𝑚𝑥𝑖 − 𝑐)2

𝑛

𝑖=1

 

So, we have to minimize this error with appropriate values of m and c. So, that is a problem, 

find m and c to minimize this error. So, we can write the expression of error in this form, 

as you can see here, that we have converted this expression in the short form of matrix 

notation of your data, just to elaborate that how this representation  

𝐸 = ∑(𝑦𝑖 − [𝑥𝑖 1][
𝑚
𝑐
])2

𝑛

𝑖=1

= ||[
𝑦1

𝑦𝑛
] − [

𝑥1 1
𝑥𝑛 1

] [
𝑚
𝑐
]||

2

= ||𝑌 − 𝑋𝐶||2  



Similarly, in the second row we will get y 2 minus mx 2, minus c and in this way, you will 

get y n minus mx n, minus c. So, this is the column vector and if you would like to take 

the norm of this vector and take the square of the norm, that exactly we will give you this 

equation or that is what we will give you also this form, you can verify that. So, this is 

nothing but, represented in this short form. So, this error E is represented in a shorter matrix 

notation as capital Y minus XC where, Y is the this matrix, X is this matrix and C is this 

matrix. So, this is how this notation has been derived, let me wipe out this writings and 

proceed further.  
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So, where E can be error can be expressed now, we have a matrix notation and as the norm 

of a matrix can be written in this form 

𝐸 = (𝑌 − 𝑋𝐶)𝑇(𝑌 − 𝑋𝐶) = 𝑌𝑇𝑌 − 2(𝑋𝐶)𝑇𝑌 + (𝑋𝐶)𝑇(𝑋𝐶) 

(Y-XC) just to explain once again suppose, you have a matrix X or a vector, which is 

represent in the form of a column vector, square of the magnitude, that is nothing but, it is 

a you understand it is a scalar amount.  

And now you expand each one using matrix algebra and then you can perform the 

multiplications also. Since, matrix is a linear operation. So, you can perform derivatives 

everything in the matrix form itself and you can extinct the analysis, what we know for 

ordinary single dimensional variable, single dimensional function cases. 
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So, in this case, if I perform the derivative with respect to C then, we will get these 

equations, which means at independently you are taking derivative of E with respect to 

each component of C,  

𝑑𝐸

𝑑𝐶
= 2𝑋𝑇𝑋𝐶 − 2𝑋𝑇𝑌 = 0 

So, this relationships from here, which is established or which can be derived using matrix 

algebra and their derivative that in short, we have written in this form, as you can see here 

this is not related to see, this is a kind of constant term, these are the term which are related 

to C.  

You can intuitively extent your knowledge of differential calculus, applying single 

dimensional, you know variable or applying those or in ordinary single dimensional 

functional space, you can just extinct them using the matrix notation, you need to know 

practice on that part, when you are deriving this in a very short and faster way. Otherwise 

you can do it component wise, we will find they have a one to one relationships with this 

kind of expression. So, once you obtain this then you perform once again, the algebraic 

manipulations with this relation. 
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𝐶 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

This is the famous pseudo inverse relationships what we previously also discussed, just to 

give you the same picture, that I am trying to fit a model like Y=XC. So, I am trying to get 

C, given Y and X. So, these are the given data. 

That is why what exactly we have derived here, it is the result of minimization of the error. 
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So, just to expand this relationships in a more granular level of data elements; that means, 

to get a solution of m and c, we can get this form, m can be expressed as ratio  

𝑚 =
𝑐𝑜𝑣(𝑋, 𝑌)

𝑣𝑎𝑟(𝑋)
=

1

𝑛
 ∑ 𝑥𝑖𝑦𝑖 − 𝑥̂𝑦̂𝑖

1

𝑛
 ∑ 𝑥𝑖

2 − 𝑥̂2
𝑖

 

Anyway, there are simpler way of deriving this relationships by performing partial 

derivative of E with respect to m and with respect to c and following 2 equations and solve 

for m and c. 

So, these are the equations we will get here, y bar and x bar is the mean of x is and mean 

of. So, y bar is mean of y is and x bar is mean of x is. So, error can be estimated by 

replacing the value of m and c in that expression, eventually you can find that this would 

come like this 

𝐸 = 𝑛(𝑣𝑎𝑟(𝑦) − 𝑚2𝑣𝑎𝑟(𝑥)) 

So, goodness of fit as I mentioned, that any module fitting you should observe this error, 

it is related to this error and you can express as a quantity called  

𝑅2 = 1 −
∑ 𝑦𝑖

2 − 𝑦̂2𝑛
𝑖=1

∑ 𝑦𝑖
2 − 𝑦̅2𝑛

𝑖=1

→ 𝑅2 = 1 −
𝐸

𝑛. 𝑣𝑎𝑟(𝑦)
 

So, it is trying to explain that what part of this variance is explained by this data fitting. 

So, this is what it compares the variability in the measurements, not explained by the model 

to the total variability in the measurements. 

So, if it is R square value if it is very high, then your model fit is good. So, this value 

should lie between 0 to 1 and you can also express in this way, this R square is related to 

E, sometimes it is called coefficients of liberation. So, once you fit a model you should 

find out also R square and the value should be quite high, say near about 0.8 or more than 

0.8 that would be a good fit, we consider that as a good fit in that case. 

You should also note that this technique is not rotational invariant and it fails completely 

for vertical lines because, if it is really a vertical line then, as you can understand your m 

is going to be almost it is m is. So, if it is vertical line, it is x = C. So, it should be almost 



like infinity y is coming now. So, it is very difficult to get term. So, variance of x is training 

to very very small and m is going to be infinity so, it will fail in that case. 
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So, there are techniques which takes care of the situations and also here the objective 

criteria for fitting model exposed in a different way and this technique is called total least 

squares. So, it is suitable for any such situation whether, it is a vertical line or not. Now, 

in this particular diagram it has been shown that, what kind of error measurement we are 

considering here instead of vertical deviation, rather we are considering the deviation of 

the point from that line itself. So, deviation means the perpendicular distance between the 

point and line. 

So, those are the deviations and sum of square of those deviations that defined the error, 

we assume here the line is given in this form. So, px + qy = d. So, that the normal direction 

of this line is given p q that is the property as you can see. So, the distance between a point 

and the line as I mentioned, you have to consider the perpendicular distance which is 

algebraically given in this form,  

|𝑝𝑥𝑖 + 𝑞𝑦𝑖 − 𝑑|𝑔𝑖𝑣𝑒𝑛 𝑝2 + 𝑞2 = 1 

So, you have to consider that representation. That you can make always in your straight 

line equation by choosing appropriate d or scaling them. 



So, the error is given in this form, 𝑝𝑥𝑖 + 𝑞𝑦𝑖 − 𝑑 is whole square and if I perform the 

derivative with respect to d then,  

𝑑𝐸

𝑑𝑑
= ∑−2(𝑝𝑥𝑖 + 𝑞𝑦𝑖 − 𝑑)

𝑛

𝑖=1

= 0 → 𝑑 = 𝑝𝑥̅ + 𝑞𝑦̅ 

𝐸 = ∑(𝑝(𝑥𝑖 − 𝑥̅

𝑛

𝑖=1

) + 𝑞(𝑦𝑖 − 𝑦̅)) 

Now, it is basically a function of p and q by replacing d there and the constant is that p 

square plus q square should be equal to 1. So, you have to choose that p and q, which will 

minimize this error E, with the constraint that 𝑝2 + 𝑞2 = 1, that is the problem that you 

need to solve. 
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So, once again we can use the matrix notation to represent the square of error, sum of 

squares in this short form; that means, it is norm of this particular vector. So, just to 

elaborate once again just that you can see that, if you considered the first row, it is giving 

you, p into x 1 minus x bar plus, q into y 1 minus y bar and in this way, you consider each 

row is formed. So, the last row is p x n minus x bar plus q, y n minus y bar. So, this column 

vector and then if you take it is norm of square. So, you get this expression.  



So, this is how it is representing in this form and you would like to make E = 0, you would 

like to get a solution but, this can be expressed also this is this form is 

𝐸 = (𝑈𝑁)𝑇(𝑈𝑁) 

So, this is how this short form is explained and let us continue with this representation.  
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So, as I mentioned this is U this is N. So, we need to solve this problem, to minimize this 

error by choosing appropriate N. So, if I derive E with respect to N, we get this 

relationships  

𝑑𝐸

𝑑𝑁
= 2(𝑈𝑇𝑈)𝑁 = 0 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ||𝑁|| = 1 

which is p and q should be equal to 1 because, that is the constraint we have put, as you 

can see now, that actually this is giving a set of homogeneous equation. 

So, you have to find out the 0 vector of 𝑈𝑇𝑈, you can do it in various ways. So, one of the 

way could be that if you perform the, if you compute the eigenvectors eigenvalues, there 

will be one value which should give you the 0 but, ideally it should give 0 but, because of 

the measurements because of noise etcetera, you should consider that eigenvector which 

corresponds to the smallest eigenvalue of the matrix 𝑈𝑇𝑈. So, that should be your solution 



in this case. So, this is what eigenvector of 𝑈𝑇𝑈 corresponding to the smallest eigenvalue, 

that you should consider.  
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We can understand this result in a more by applying on notion of geometry, as I have 

summarised the analysis and you can see that the direction of normal is given that N is 

actually they in a perpendicular direction of the line, what you have fitted here and in the 

form of px + qy = d, d is an interpretation of parameter d as it is a perpendicular distance 

from origin to that line.  

The structure of 𝑈𝑇𝑈 is also interesting to note, you can see that it is a 2 X 2 matrix and 

whose eigenvalues there will be 2 eigenvalues and you have to choose the minimum 

eigenvalue and the vectors would be also of dimension 2 X 1 and the diagonal elements 

and the variances of x coordinates and y coordinates whereas, of diagonal elements and 

covariance of x and y and this is a symmetric matrix. So, this is what once again 

eigenvector of 𝑈𝑇𝑈 corresponding to the smallest eigenvalue, that is the solution of this 

problem. 

𝑈𝑇𝑈 =

[
 
 
 
 
 ∑(𝑥𝑖 − 𝑥̅)2

𝑛

𝑖=1

∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

∑(𝑥𝑖 − 𝑥̅)(𝑦𝑖 − 𝑦̅)

𝑛

𝑖=1

∑(𝑦𝑖 − 𝑦̅)2

𝑛

𝑖=1 ]
 
 
 
 
 

 



(Refer Slide Time: 18:18) 

 

Let us now consider the problem of line fitting, when you have a situation where there are 

clotted observations or when you there are some outliers in your observations. In fact, this 

technique though we will be discussing with respect to line fitting, it provides you a general 

framework for model fitting in the presence outliers. You can apply this technique in our 

previous cases of finding homograph matrix or fundamental matrix or projection matrix, 

those we discussed in our previous topics. 

So, outline of this technique is that, you should choose a small subset of points uniformly 

at random and then should fit a model to that subset then, find all remaining points that are 

close to the model and reject the rest as outliers and do this many times and choose the 

best model. So, this is what is this technique will be considering and this is what is used 

or general line of approach will be discussing with respect to a straight line for solving 

this. So, let me give you a general outline first here let me explain it. 
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So, the approach what I mentioned earlier that considered, you have a set of points, which 

you required to fit in a straight line. There would be some points which are also deviated 

and which we considered their outline. So, you may consider say this could be a good fit 

of a straight line among this points but, if I apply the least square error method, the outlier 

will cause providing you a straight line which is not really fit in this one, it may come 

something like that, which will minimize the least square error, which is not desirable. So, 

your objective is to first find out a set of reliable points which we called inlier points and 

then apply model fitting on those points only. 
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So, in that case what we are doing once again, use that examples of some other points, 

which forms a good inlier points for fitting a straight line and see there are 2 outlier points 

and as I mentioned. So, what you consider here that you may choose, it may some take 

some initial setup points, arbitrarily choose any set up points, say initially you have chosen 

this point and see this point minimally and then you can fit a straight line and then you 

find out how many points which are lying in vicinity to the straight lines by looking at the 

perpendicular distance and give a threshold to declare that, they are lying in the outlier, 

there lying as an inlier point to that model. 

Now, if this number is quite high, then you can say that you know this is a good model 

and then again use all those additional inlier points to refine the fitting of your model. But, 

as you can see in this scenario, there are only say 2 points, additionally 2 points only 4 

points and I mean you can set your parameters in such a way which can decide that this is 

not a very good fit. So, we will try another setup points.  

So, let us consider now that you have chosen, say this point and this point and this is your 

randomly again you are choosing and this is giving initial setup inlier points and then again 

you perform this test; that means, you are finding out which pointer line closer to this line 

and by configuring the distances and you consider all the points, which are outside this 

lines, that is outside this threshold there outliers. 



So, now you can see at least, you can get a good mini points within this straight line and 

if you are with this number is high, when you may choose this setup points as inlier points 

and refine your model. 

So, unless you get a good setup inlier points, you can go on doing this trial, go on doing 

this operation N number of times; that means, more number of times and maybe at after 

certain, if you do not get in any trial there is a good setup inlier points you may drop the 

idea of fitting this model because, it may happen the data is not good enough for fitting 

the model otherwise, if you get a good set of inlier points, then you can simply use them 

and refine your model. So, we will elaborate this process in the next lecture, for the time 

being let us stop here and. 

Thank you for your attention. 
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