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Lecture - 03 

Image Transform Part - I 
 

In this lecture I will introduce Image Transforms. 
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Let us consider image as a continuous function; it is a two-dimensional function and a point is in                  

the two-dimensional real space and let us consider set of basis functions which are also a                

two-dimensional functions, we can represent it as a set where each function is given by               

say 

b​i ​(x,y) . you should note that this could be the functional value, could be either in real or in the                      

complex domain. We can represent, we can expand the two dimensional function f(x,y)             

using B as a linear combination of this basis functions as it is given here in this form that                   

λ​i​ × b​i​ (x, y) and where i is the indexes of the basis functions as given in the set. 



So, the transform of f with respect to B is given by the set of set of this coefficients which are λ​i                      

these are called coefficients of transform and we can represent the function as the linear               

combination of this basis functions where the coefficients of the linear combinations are             

listed here. So, you can see that this is an alternative description of the image instead of                 

representing the image by the functional form of f(x, y); I can simply represent it as a list                  

of coefficients or even these coefficients can be a function of indexes. 

So, indexing maybe multidimensional, for example for a two-dimensional function indexing            

we can use two such indexes to denote a coefficient and in that case we can say that this                   

function can be expanded in the form of a linear combination of two dimensional              

functions and we can have this double summations in this representation. So, one of the               

advantage of image transform is that this properties of basis functions this can be              

extended in the analysis. 
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. 

Let us consider a particular type of property which is very useful when this basis functions they                 

have this property. This property is called orthogonality property and if I expand the              

function in terms of this orthogonal basis functions then we call that expansion as              

orthogonal expansion. We will consider our discussion following up the discussion on            



this image transform, we will restrict our discussion to one-dimension first and later on              

we will see that now these properties can be easily extended to two dimension. So, we                

will understand the one-dimensional transform initially. 

So, one of the thing that we would like to define here this operation inner product. So, inner                  

product is a binary operation where two operands are two functions you can see that this                

function f(x) and the another function g(x). So, it is the product of this two functions and                 

integral of this product values at every point in the space x. Now of occurs in this product                  

there is a there is there is something we should note that it is not a simple product, it is a                     

product of function f(x) with the complex conjugate of g(x) and that is we are considering                

here. If both f(x) and g(x) functional values are in the real domain then complex               

conjugate itself will be the same functional value, so then we can write it as f(x) g(x) dx. 

So, orthogonal expansion it is possible when the basis functions this satisfies certain property,              

that means the set of basis functions it satisfies this particular property of a orthogonality.               

What we can see that inner product of any two different basis functions that should be                

equal to 0, whereas inner product of the same basis function will have a non zero value                 

and which is a positive value. If this is true for any pair of basis functions in the set B,                    

then we say that this basis functions they are all orthogonal in that set. 

So, transform coefficients in orthogonal expansion that could be easily computed by exploiting             

this property, that is one of the usefulness of this particular property and you can say that                 

simply if I take the inner product of the function with a basis function, then we can and                  

also divide it by c​i then we can get the corresponding λ​i​’s. And if c​i is equal to 1 then it                     

becomes orthonormal expansion then we can simply write λ equal to inner product of              

function and b​i​. So, this is what of since we are expressing the functions in terms of only                  

transform coefficients, so we call this operation is a Forward transform operation. 

So now, function instead of being represented by f(x), now the functions function is represented               

by these λ’s and the reverse transform or inverse transform would be to compute the               

function from this coefficients back and because of the orthogonal property and also             



orthonormal property, we can simply write it in this form. That means, simply it is a;

it is nothing but the linear combination of those basis functions and since it is a                

continuous domain. So, we are taking the integrations over all the index values otherwise              

in a discrete domain we can write it in this form. 
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So, one of the special case of this orthogonal expansion is Fourier transform and in this case you                  

can see that set of basis functions is given by in the following  form: 

  (eq. 1)|B = ejωx − ∞ < ω < ∞  

it is a complex sinusoid which is the member of the set, it is given in the above form and the                      

completeness (Refer Time: 06:53) of this basis function is : any orthogonal set which is               

a subset of any orthogonal basis set will also remain orthogonal, but using the linear               

combination of that subset, you will not get the complete reconstruction of the function. 

The basis set which keeps the complete reconstruction that is called the complete base. So, in the                 

Fourier transform, in fact, the set what is defined here it is a complete base because, it can                  

give me back this function as a linear combination of this function. You can see that                



actually this (eq. 1) is a infinite set, though individually every sinusoid can be              

distinguished here. 

So, the orthogonality property is reflected by this particular relationships where you can see the               

that �(x) is the unit impulse function whose area is equal to 1 centering at ⍵ equal to 0                   

and otherwise �(x) value would be 0 in everywhere. So, it is an unit impulse function                

and this particular property gives you the orthogonal property of the Fourier transform             

this base. 

So, Fourier transform can be defined in the following form which  is the forward transform . 

=(f (x)) (jω)F = f̂ (x) e   ∫
∞

 −∞
f −jωx  

as you see in the above that it is an inner product of f(x) and also the complete base. So, the base                      

is ,. So, you take the complex conjugate of the base which is . And if I take the ejωx              e−jωx       

inverse transform then once again this is considered as the inverse transform; 

(x)f = 1 
2π ∫

∞

−∞
(jω)e dxf̂ jωx   

So, is the corresponding coefficients and the linear combination of this basis function will (jω)f̂               

give you the corresponding inverse transform. 

So, it gives you the full reconstruction because it is a complete base as I mentioned. One of the                   

interesting fact that can be noticed in the following complex sinusoid  

os(ωx) sin(ωx)e−jωx = c − j  

it can be recomposed into two real and imaginary parts, real part consists of and              os(ωx)c   

imaginary part consists of say in this case. So, this forward transform can be     in(ωx)− s          

expressed using the following expression itself. 



(x)f = 1 
2π ∫

∞

−∞
(jω)(cos(ωx) sin(ωx))dxf̂ − j  

 

So, it has one transform component which consists of real part, another transform component              

which consists of imaginary part and in the real part we are using the basis functions as                 

where as in the imaginary part we will be using the basis functions at oros(ωx)c              in(ωx)s  

 whatever be your interpretation.in(ωx)− s  

So, we can consider  as the set of basis functions and this is also orthogonal,os(ωx)c   

os(ωx)|C = c − ∞ < ω < ∞  

in(ωx)|S = s − ∞ < ω < ∞  

 

The above trigonometric functions are also orthogonal we know and is also          in(ωx)s    

orthogonal. But the thing is that as I mentioned that they will not form the complete base.                 

So, we can use only . If I use the real part of then that will     os(ωx)c    (jω) cos(ωx)f      os(ωx)c    

not give you back the full function. Similarly if I use the corresponding imaginary part of                

the transform and use the  that will not also give me back the full function.in(ωx)s  
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So, it is not a complete base but there are certain functions where actually if you use only cosine                   

functions or sine functions, you can reconstruct it fully, so these functions are called even               

and odd functions. 

There is a property like for an even functions, it should satisfy the following property: 

for all (− ) (x) f x = f x  

i.e, it should be symmetric around the origin or around at at both ends say should            x = 0      (− )f x  

be equal to  for all x(x)f   

for all (− ) − (x) f x = f x  

Whereas for odd it should be antisymmetric. i.e,  equal to  for all x and(− )f x (x)− f  

(0)  f = 0  

 naturally ​at the , the value has to be equal to 0 for this definition.x = 0  



So, a function could be even, it could be odd or it could be neither, when they are belong when                    

they have this property, then you can expand them using only cosine or only sine               

functions. So, let us see so even we can have this is a property which is satisfied       (x)f           

because, in that case if I take the integrations while taking the product with that              in(ωx)s  

would be 0. I.e, 

∫
∞

−∞
(jω)(sin(ωx))dxf̂ = 0  

 

So, all sinusoidal terms would be 0; so that is why only cosine terms will remain and your                  

transform coefficients can be sufficient to prescrib by only cosine transformations. 

∫
∞

−∞
(jω)(cos(ωx))dxf̂ = 0  

 

Similarly for odd the above property is true and that is why using only sine sinusoidal basis    (x)f                

you can reconstruct it. 

Now this could be easily derived if I consider this relationships of and in terms of            os(θ)c   in(θ)s     

the complex exponential quantities as below. 

os(θ)c = 2
e +ejθ −jθ  

in(θ)s = 2j
e −ejθ −jθ  

So, full reconstruction is possible with cosines when the function is even and with sines when                 

the function is odd. 
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Now, let us consider the discrete representation. So, a discrete representation of a function can be                

made in the following form : 

(n) f (nX )|n }f = { 0 ∈ Z  

that the function needs to be sampled at periodic interval and it will provide a sequence of                 

functional values where each sequence position is an integer set and sampling interval             

which is associated with this particular definition. 

So, it can be also considered as a vector in an infinite dimensional vector space, but in our                  

consideration since we will be always using images of finite dimension or the signals of               

finite dimension, you are representing them in the computation in the discrete domain. 

So, there we will be having only a finite dimensional vector. 

(n), n , , ..,f  = 0 1 . N − 1  

For example we can represent a function from within certain interval from say 0 to               

 as shown above.N − 1  



You should note here the sampling interval is implicitly represented in this form. So, even               

without sampling interval we have a representation of the function and when you are              

trying to interpret the function with the physical terms, physical quantities in the             

functional space then only the sampling interval has to be used. 

So, let us consider that we are representing a function in this case with a finite dimensional                 

vector and say it is an n dimensional vector in this case; it is a column vector                 

representation. So, that is why the transpose operation has been used as shown below. 

f (0)f (1)...f (N )]f = [ − 1 T  
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So, then how do you define a discrete linear transform? It is very simple because you know that                  

whenever we perform any matrix multiplication in the following form: 

=Y m×1 XBm×n n×1  



, say you have a column vector of n dimensional column vector and let there may be a matrix of                    

dimension and if I multiply them then you will get another vector of ×  nm                ×  1m  

dimension, that means m dimensional vectors. 

So, this is a transformation of this column vector into another column vector of a different                

dimension. we call it a linear transform or as it is discrete since we were using the                 

discrete presentation, let us call it as discrete linear transform. And this transform has              

inverse when this matrix which is called say transformation matrix B is a square matrix               

and also invertible. 
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So, one of the interesting facts about this transformation matrix that we can note that we can                 

consider rows of these transformation matrix B, they form the basis vectors, this is the               

analogy with respect to the basis functions. Because we will see instead of inner product               

between two functions we are having here, inner product of two vectors which is              

equivalent to the dot product of two vectors. 

So, let us consider this say this is the representation of the transformation matrix  



and these are the row vectors which is indicated by the transpose operations and you can say that                  

this is a row vector you are considering, these are the complex conjugate operations by               

keeping it consistent with representation what we have for the inner product. 

So, when we perform this dot product or inner product between two vectors, then you get the                 

corresponding element. So, i​th basis vector provides you the i​th element of the transformed              

vector which is Y here.  

.b =  if  i≠ j< bi
T*

j > 0  

otherwise   = ci,  

 

 

So, the orthogonality condition in this case is reflected in the above form such that if you take                  

any pair of two basis vector, then their inner product should be equal to 0 if they are                  

different otherwise they should have a non zero value .ci  
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So, with this form we can consider that it will have the similar representations. You can consider                 

that a function as a linear combination of all those basis vectors. So, if I look at the                  

discrete Fourier transform expressions, the basis vectors for the discrete Fourier           

transforms are represented in this form. So, it is you should note here this is         1
√N ej2π nkN        

defined for n functional points. 

 for , and (n) ebk = 1
√N

j2π nkN  ≤ n ≤ N0 − 1  ≤ k ≤ N0 − 1  

 

 

So, is a small element which means you can form a basis vector from by computing it (n)bk     nth              

to at it at each integer value of n within these interval. So, that gives men = 0   n = N − 1                 

a vector that is a k​th vector and there are n such vectors where the k indexes k is indexes                    

vary from 0 to .N − 1  

  for (k)f̂ = ∑
N−1

n=0 ̂
(n)ef j2π nkN  ≤ k ≤ N0 − 1  

 

So, forward transform or discrete Fourier transform of a discrete sequence which is a finite          (n)f      

sequence of length n can be expressed in the above form.  

  for (n)f = 1
N ∑
N−1

n=0 ̂
(k)ef̂ j2π nkN  ≤ n ≤ N0 − 1  

You can find out that this is nothing but the inner product of .only thing is that             (n) and ef j2π nkN     

instead of putting in this expression ,we have taken care of the square root operation   1
√N              

during the inverse transform by multiplying as shown above .This is a simple      1
N         

operation . 



So, we kept this division normalization operation. We removed that operation in forward             

transform and included it in during that reconstruction. So, actually the value what we              

will get that would be proportional and it does not matter at this stage. But when you                 

reconstruct, it will again recover the same value because, you are taken care of that               

particular normalization during reconstruction operation. 

So, you can see that it is a linear combination of the corresponding of basis vector in the                  

reconstruction also and the coefficients which is given by are the coefficients from         (k)f̂     

discrete Fourier transform. We can also observe from the above expression that discrete             

Fourier transform is nothing but Fourier series of a periodic function. So, let us consider a                

finite sequence. So, in this case for simplicity let me take only four functional values and                

so, which means my value of N is 4 here and this is a functions for which I will be doing                     

discrete Fourier transform. 

So, what I will consider because there is no definitions outside this interval, I can use any                 

definition as per my convenience any other functional values and perform a            

transformation and after inverse transformation once again I will keep my observation            

window within the interval from 0 to 3 in this case. So, a periodic extension of this signal                  

could be in this form that means, it is repeated so that you know in a periodic function                  

this property needs to be a satisfied a periodic function with a period capital N should be                 

. So, that is satisfied as you can see here, here the value of N is equal to 4.(n ) (n)f + N = f  

So, you will see after every fourth sample again it is repeating the same value. So, it becomes a                   

periodic signal and as you know any periodic signal can be expressed as a linear               

combination of sinusoid functions and you can perform Fourier series ,that is ,what you              

are doing here in this case. After that, while in performing inverse Fourier transform ,               

you are only performing for these four sample points. So, and just to note that how it is                  

related with the actual physical  sampling interval which is say  here.X0  



So, the fundamental frequency would be determined by the length of the period of this signal                

which is  So, fundamental frequency is .XN 0
1

NX0
 

And you can see that harmonics is represented by harmonic actual implicitly there is          k
N       Xk

N 0  

that is the physical frequency. So, we call as the normalized frequency in this        ✕Nk       

representation. 
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So, discrete Fourier transform that can be also expressed in terms of a linear transforms which                

means we can express a discrete Fourier transform as a matrix multiplication of a column               

vector where the column vector is given by the functional values a finite dimensional              

vector as we have considered earlier and if I multiply these matrix then we will get the                 

transform matrix and you can see that these elements they are obtained from this              

corresponding basis vectors definition. 

So, we can represent this matrix in a shorter form where each k and N​th element is represented by                   

the corresponding expression as shown below 

e ]ℱN = [ −j2π nkN 0≤(k,n)≤N−1  



and if the value of k and n they range from 0 to which will give me an matrix. So,              N − 1       ✕nm    

in a forward transform what we are doing; We are simply multiplying this transformation              

matrix with a column vector f which is representing the particular column vector             

.f (0) f (1) ...f (N )][ T  

Then, we get the output transform matrix. So, the ( ) transform matrix transform column           N × N      

vector which is representing the column vector which is       F (0) F (1)....F (N )][ − 1 T   

actually the coefficients of discrete Fourier transform. .fF = ℱN  

 

and inverse transform will be naturally if I take the inverse of and multiply with F then             (N )F       

we will get back once again column vector. ) Ff = (ℱN
−1  

Incidentally because of the orthogonality property and also orthonormal property of these            

functions. So, you can show that the inverse of the discrete Fourier transform matrix is               

nothing but its Hermitian transpose of the corresponding matrix. ) ℱ )(ℱN
−1 = ( N

H  

Hermitian transpose is the transpose of this matrix and also you should have to perform complex                

conjugate operation that would give you the Hermitian matrix. 



(Refer Slide Time: 24:53) 

 

Now, discrete there could be other kinds of know say it off orthogonal basis vectors and some of                  

them could be derived or extended from discrete Fourier transform representation. So, we             

call it generalized discrete Fourier transform. 

If you can observe that in the discrete Fourier transform ,basis vectors are generated by sampling                

the complex sinusoid within an interval between 0 to and then we have sampled at         N − 1        

regular interval .Now if I make a phase shift there in that interval. So, there itself we can                  

have a variation instead of we can give a phase shift of 𝜷 and also while defining basis                  

vector we have considered harmonics and we have generated harmonics at regular            

interval. 

 for , and (n) ebk
α,β

 = 1
√N

j2π (n+β)N
k+α  ≤ n ≤ N0 − 1  ≤ k ≤ N0 − 1  

So, if I give also a shift in the frequency space ,then also you can have a different basis vector.                    

Now the above representation will generate also n basis vectors of N dimensions and that               

would be once again an orthogonal basis vector which is a square matrix which could be                

invertible. 



So, it could be easily used for once again for making a transform. So, this is the generalized                  

discrete Fourier transform. We can use this basis vectors and we can get this expressions               

for discrete Fourier transforms. Similarly we can get back the function by applying the              

inverse Fourier transform it is the same similar form what we did for the case of discrete                 

Fourier transform and the corresponding transformation matrix can be expressed in this            

form, here the elements as you can see it retains the same similar expressions only there                

are parameters  and  which is giving you a different set of transformation matrix.α β  

There are some popular transformation matrix as you can see a special value of at zero and              α     β  

that itself will give you the discrete Fourier transform what we have discussed earlier. If I                

took =0 and set , we call that transform as Odd Time Discrete Fourier Transform α     β = 2
1            

or OTDFT and you can represent the transform in this form; similarly and             α = 2
1   β = 0  

would be Odd Frequency Discrete Fourier Transform and if both are half; Odd Frequency              

Odd Time Discrete Fourier Transform. 

There are different properties which I am not discussing here; just for your example we have                

given this particular thing and they have their inverse transform in this case also. Those               

are related and  I have shown you in this particular grade. 

So, there are different relationships of the inverse transform. I think let us stop here at this point                  

and we can start from this point in the next lecture, where will see that though it is not                   

possible in the continuous domain to have cosine transform and sine transform for every              

kind of function but in discrete domain for any finite dimensional sequence you can              

define cosine transforms and sine transforms.  

So, for that we will be using this generalized discrete Fourier transform. So, thank you for                

listening this talk and we will move over to the next lecture. 

Thank you. 

 



 

 


