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We are discussing the topic of Feature Detection and Description and in the last lecture we 

discussed how the interesting points or key points which will remain mostly invariant of 

different transformation those can be detected those are the corner points. So, the question 

is that now how do you characterize those corner points? 
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For example take these two images of the same view which I have shown in this particular 

lecture in the beginning of this lecture. So, here as you can see that there are many various 

interesting points, if I perform the same computations of Harris operator, then we can 

obtain the corresponding feature values and there you can see that these are the corner 

points which are looking little faded in this display. 

But these are the corner points which are here and there are various corners. So, out of 

them which pairs of corner points or which pairs of key points their corresponding to the 

same point. So, this is the question. So, how do you get those pairs of points and how do 

you establish those correspondences? This is the problem of feature matching that we 

would be considering. So, let us consider that what are the stages are there. 
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So, these are the three stages of computation of matching that we need to detect the feature 

points in both images. For example, we have applied the Harris operator and we considered 

those key points which have been extracted those are the feature points. 

But we do not know that which point corresponds to which one in the other image. So, 

then just to uniquely describe every point we can describe them by some local statistics. 

So, we will discuss how the statistics could be described that is what we have to build up 

a descriptor for each feature point we call it feature descriptor. And then of course, using 

those description we have to find the corresponding pairs of points this task is known as 

matching. 
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So, again the main issue is that can you select the same features under various 

transformations; as we did also for consider this particular issue while detecting features 

this is a major concern and. Even after detecting the key points can you detect the same 

pair of true pairs of key points on various transformation?. So that means, your description 

should be also invariant to those transformation. For example, it could be rotation, change 

of illuminations, and variation of scale like many other such transformation. 
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So, the key idea for detecting the corners is that we need to find out a scale. So, one of the 

major concern in this detection is scale that we will find out. So, because the scale how to 

make the description scale independent there lies lot of tricks. Usually you can make 

descriptions rotation independent or translation independent that is easier to do but scale 

is much more trickier. 

So, to get a little more scale independent what we can do or to get that scale independence 

features we can consider the image representation in multiple scales which means multiple 

resolutions. And observe that what kind of local measures of that ‘f’ you are considering 

how it varies with scales. In a proper scale it is expected that if this value which should be 

very high compared to the other scales which are not very appropriate for reflecting that 

measure. So, we will continue and we will understand this process. 

So, it is a local maxima in both position and scale that is what we will be considering and 

there are various kinds of such measurements like Laplacian measurements which is a 

second derivative operations over the images. We will define this measure mathematically 

soon or we can consider differences between two Gaussian filtered images with different 

scales at different standard deviations. Standard deviations of Gaussian mask there also 

called scale in the image processing jargon. So, you can hear the similar terms. 
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So, we discussed this particular thing. Let us elaborate this particular fact; say you have 

two images I1 and I2 and say I2 is a transformed version of I1 and as I mentioned different 



kinds of transformation not only translation rotation scale it could be non-uniform scaling, 

it that could be illumination changes, that could be view changes, it could be reflected and 

so you need to get transformation invariance. 

Transformational invariance of this measure which means we have to detect the same 

features regardless of the transformation and detection in the sense now in the description 

also should be unique. So, that your matching should be successful even after 

transformation. 
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So, both the detection and description should be invariant and both should be ensured and 

as we have discussed that Harris measure is invariant to translation and rotation but we did 

not consider the variation over scale. So, we will see that how this could be ensured as the 

in the previous slide we discussed that we can use multi-resolution representation of 

images. 

 Just to explain a little bit about this resolution representation, what we can consider? 

Suppose you have an image and with an object this and it is given in its say original 

resolutions; that means, the camera resolutions the number of pixels whatever you have 

got in the sensors and the spatial resolution (Refer Time: 07:06) that particular number of 

pixels that gives you the; to gives you the highest resolution given that imaging. 



But then what you can do, you can sub-sample you can down sample this pixels and get 

the smaller size of images. So, and in some cases even this particular it can could be so 

small that that this may appear like a dot. So, you can see that depending upon different 

resolution the structured structural information will vary. So, it may it may not retain the 

same structural information and sometimes the larger objects with when it has a very high 

resolution but once we increase the high resolution say you have a very very tiny objects. 

Now, in this resolution it could be detected whereas in this resolution this would be lost. 

But you have a very large object in an image now with using local measures to get the 

overall ideas of the shape would be difficult to comprehend difficult to analyze. But if I 

get a smaller resolution of this image, then even a smaller window will be able to capture 

this particular feature then the local measure corresponding to that particular 

representation should give a higher value. So, that is the idea of having multi-resolution 

representation. So, you vary the resolution but highest resolution that is already 

constrained by the imaging system. 

But only thing you what you can do you can get lower resolution versions and try to see 

that you know some of the structures in those lower resolutions are becoming more 

prominent and easily detective. So, this idea has been used to in particular this feature 

detection. 
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So, this is an approach, so you can compute features at multiple scales, you can use a 

Gaussian pyramid which means; you smoothen the image using some Gaussian mask 

varying standard deviation. So, scale would be higher iteratively; iteratively scale will be 

increasing and also you can down sample the image and you can get a pyramidal structure 

of that representation you have an image. So, if I show it in this form say let me show the 

image it is a bottom resolution higher resolution. 

In the next version after smoothing this image using a Gaussian mask and such sampling 

you get this resolution you use further smoothing; that means, effectively you are using a 

very larger mask over this image. So, you’re smoothing this image and you are getting 

coarser distribution and sub-sampling it. So, you get a next level of resolution. 

So, this kind of representation is useful. Since the shapes looks like a pyramid if I place 

them if I stack those images in this particle vertical order it’s just a visualization. So, that 

is a very popular term which is used for this multi resolution representation we call it a 

representation following a Gaussian pyramid representation. Which means every image is 

convolved by a Gaussian mask and then subsampled and you get multiple representation. 

So, for single image you get ‘n’ number of images of varying sizes by this process. So, 

this is what Gaussian pyramid representation is. And in fact, there is a very efficient and 

effective you know method by which you can compute the best scale for feature detection 

and that method I will be discussing in a method called sift method which is scale invariant 

feature transformation. So, we will be discussing then and. So, the basic idea is a feature 

descriptor should be transformation invariant. 
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And it captures the information in a region around the detected feature point that should 

be the property. For example, we can consider histogram of gradient directions in a square 

window centering a feature point. So, these are the two steps one is the detection which 

should be invariant to transformation including scale, the other one is a description. So, 

you should consider now description at that scale. 

So, whatever local statistics you collect you should collect the image which has been 

transformed through that multi-resolution processing; that means, which has been 

convolved using a Gaussian mask of that scale and then consider the point which is been 

detected at that scale and consider the neighboring statistics at that scale. So, these are the 

two policies which are used in particular to get it transformation invariant scale invariant 

description. 
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So, it just explains what I wanted to show through the diagram you can see at different 

resolution the local descriptions they two vary at an appropriate resolution. The alphabet 

‘a’ is visible, but if you look at very closely then ‘a’ gets missing. So, if there is any 

measure of this interestingness of a particular resolution, then there is an appropriate 

resolution in the middle where you get more interestingness and that is what is shown here 

hypothetically, it has been shown by this particular curve. 
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So, for scale invariant detection one of the major task is that to determine the appropriate 

scale and for that we need to convolve with image. And since now we have a 3 dimensional 

space because not only the 2 dimensional special locations of say x and y direction, you 

have a direction along scale. 

So, you observe the measures in both position and scale that would give the three 

dimensional space. And there are different kernels which we are going to define here like 

Laplacian kernels and difference of Gaussians which means kernels are here this is the 

masks as we defined earlier and which needs to be convolved with the image to give a 

measure and you would like to find out a local maximum of those measure. 
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So, just to define it, first let us consider the definition of a Gaussian function. As you can 

see, this is a 2 dimensional Gaussian function and uniformly scaled along directions which 

means standard deviations is uniform in all directions if particular in two principal 

directions x and y directions and this is the you know Gaussian function and this is a 

continuous function. 

𝐺(𝑥, 𝑦, 𝜎) =  
1

2𝜋𝜎2
𝑒

−
𝑥2+𝑦2

2𝜎2  

 



 So, for a discrete processing you need to get a discrete representation of this function over 

a mask or over a window. Say if I choose a mask size of say 10 x 10, then that fixes you 

have to find out considering the center of the mask as the origin you get the functional 

values in other locations. 

And the mask size depends upon the values of sigma. So, the one of the criteria could be 

that it should be say 2√2𝜎 sigma which is a very large mask size. So, this is a definition 

of the Laplacian mask and we have you have defined using the Gaussian function.  

𝐿 = 𝜎2(𝐺𝑥𝑥(𝑥, 𝑦, 𝜎) + 𝐺𝑦𝑦(𝑥, 𝑦, 𝜎)) 

As you can see that these are the second derivatives of those Gaussian functions it’s some 

of the second derivatives along x direction and y direction and this is normalized by 

multiplying with sigma squared to make it scale invariant description. And difference of 

Gaussian this descriptor is defined in this fashion 

𝐷𝑜𝐺 = (𝐺 (𝑥, 𝑦, 𝑘𝜎) − 𝐺 (𝑥, 𝑦, 𝜎)) 

 It is just from the nomenclature itself. It is understood that it’s mask which is defined from 

the difference of two Gaussian functions of two different scales; one scale is 𝑘𝜎 the other 

scale is 𝜎. 
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These are the shape of the kernel; that means, shape of those functions in 1-D you have 

shown and no any 2-D you just rotate it along the axis of symmetry in the center and; that 

means, about y axis if you rotate, then you will get the 3 dimensional mask. That means, 

it’s a function of 2 dimensional space, but we will get the values in a represents as a 3 

dimensional representation on that particular function. So, you can see from this particular 

plot that both difference of Gaussian and Laplacian they are quite similar.  
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They are quite similar in fact, mathematically also one can show you can perform these 

operations; that means, take the Gaussian functions take the partial derivative along sigma, 

then you can show that that is equal to sigma into this Laplacian of G, Laplacian of that 

Gaussian mask. 

𝜕𝐺

𝜕𝑥
= 𝜎Δ2𝐺 =  

𝜕2𝐺

𝜕𝑥2
+

𝜕2𝐺

𝜕𝑦2
 

So, this can be shown in this problem and you can see that the Gaussian difference of 

Gaussian mask is proportional to the corresponding Laplacian mask and this factor is (k-

1) is kept constant across scales.  

𝐺(𝑥, 𝑦, 𝑘𝜎) − 𝐺(𝑥, 𝑦, 𝜎) = (𝑘 − 1)𝜎2Δ2𝐺 

 



So, it does not influence extreme locations. 
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So, figuratively it is showing how this computation proceed. So, you have to convolve 

with a series of Gaussian masks and then at different layers sometimes you have to down 

sample it and produce that 3 dimensional functional distributions in a three dimensional 

space and then you have to get the local extreme. 

So, that is what you will be considering. So, in this particular particular figure it has been 

shown the order of computation. So, this is the original image, you perform the Gaussian 

mask you perform the Gaussian operation. So, this is a Gaussian and then you get the 

subtraction that is a difference of Gaussian. So, this is the first representation of difference 

of Gaussian. Again you smooth using the Gaussian image Gaussian convolution subtract 

this one from this one. So, you get the second layer of difference of Gaussian images. 

So, in this way you are producing the representation in a 3 dimensional space of scale and 

positions and then you have to find out the extrema in 3 dimensional DoG space or 

Difference of Gaussian space. 
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So, just to summarize that we have discussed about two different kinds of detectors the 

difference of Gaussian detector is used in this sift descriptor which I will be discussing 

next and which has been proposed by David Lowe which has been found to be very 

popular. And also Harris Laplacian; that means, Harris operator with applied over the 

Laplacian pyramid representations of the particular with varying scale and then you get 

local maxima varies corner response in that space and scale that would also give you the 

transformation invariant. So, these are the two major you know detectors which are 

popular in particular in the literature. 
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So, just to summarize the scale invariant detection that given two images of the same scene 

with a large scale difference between them, we have to find the same interest points 

independently in each image and so the solution is that you have to search for maxima of 

suitable functions in scale and space over the image. And these are the two methods which 

I mentioned one is Harris Laplacian and this it maximizes the Laplacians over scale and 

Harris is measure of corner responses that has to be used in those Laplacian over scale 

representation and then the sift is maximize the difference of Gaussians over scale and 

space. 
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Now, the thing is that what you get out of this process is you get lot of key points. Now, 

some of this key points are not so important and some of them may not be structurally very 

robust because a small disturbance can disturb them. 

So, we would like to get only those key for a points which are more robust to the 

transformation and which has a very precise location locations are to be very precisely 

defined there. And for example, a many key points will lie on edges and as we have 

discussed that, corners are more robust than edges. So, even some edge points can give a 

very high response and can be a local maxima, but we need to eliminate those edge points. 
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So, there are certain operations like you can perform over the key points you can apply 

this particular operations. For example, if you apply this particular Laplacian operator that 

is edge operator what you can see, if these are the double derivatives over the difference 

of Gaussian functional values and it is expected that this would give you the curvature 

value. 

So, the Eigen values of this particular matrix.  

𝐻 = [
𝐷𝑥𝑥 𝐷𝑥𝑦

𝐷𝑥𝑦 𝐷𝑦𝑦
] 

will be giving the principal curvatures and it is expected that for edge points it would be 

large across the edge, but a small one in the perpendicular directions. So, both the 

curvatures should be also very large. So, this is one characterization of edge point by which 

you can eliminate those edge points.  

𝑇𝑟(𝐻)2

𝐷𝑒𝑡(𝐻)
<

(𝑟 + 1)2

2
 𝑓𝑜𝑟 ℎ𝑖𝑔ℎ 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑟 (𝑠𝑎𝑦 10) 

S so you compute the eigenvalues and eigenvalue should be large they should not differ 

much too much. 

And this is how this computation is carried out and this is equivalent once again to you 

know equivalently computed by computing traces of this matrix H which has been defined 



here, this H is different than what we discussed for Harris operator because these are all 

double derivatives of the difference of Gaussian functions as you can see from the 

definition. So, the ratios of square of trace and determinant it should be very high then 

only for high value of ‘r’. So, it should be less than this and then you should we should 

take this value. So, eliminate key point if the ratio greater than this threshold it occurs if 

the ratio is greater than this then those key points are eliminated. 
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So, now the question is that how do you characterize a key point? So, there are some local 

statistics that we need to consider, one of the attribute that we would be considering that 

what the major orientation around that neighborhood is. So, we can assign that orientation 

because if you get the major orientation, then the local statistics could be made orientation 

independent you can perform a transformation. So, that your reference axis is aligned to 

that major orientation or major oriented directions and then you can aggregate those local 

statistics by performing those transformation that is how you can make it rotational 

invariant. 

So, computation of orientation is important. So, what we can do that, in that case is locally 

you can get gradient directions around its neighborhood and then you can compute a 

histograms and bin them. You can see that in this particular example this binning of the 

directions are shown by this angles because this directions can be considered with respect 

to some x axis with respect to the reference x axis the angle what is formed by this direction 



that is what is of our interest. So, you can discretize this range of this angles varying from 

0 to 2π into some intervals and then put those directions into one of those bin. 

So, that is what is known as binning of these directions in a histogram and then find out 

know which is the prominent one out of this discrete options and we can assign that 

directions to that particular feature vector to that key point actually. So, assign canonical 

orientation at peak of smoothed histogram. So, even you can perform smoothing of this 

histogram and then you compute the peak of that particular functional value and that peak 

will give you the orientation. 

So, in this way a key point is described by its position scale and orientation because as I 

mentioned that scale is determined where you get also the local maxima in position and 

scale that is of the scale and positions have obtained and then orientation is computed in 

this in this fashion. There could be some situations where you can have two major 

orientation. So, you may have to use both; that means, multiple descriptor description of 

the same key point. 
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So, these are some examples which are again taken from this slides. In fact, it is also in the 

book by Zisserman. So, you can see that I mean Zisserman and Hartley there are multiple 

authors. So, there are there are some examples that you have key points after gradient 

threshold and key points after ratio threshold this example shows that how key points are 

you know reduced using those different kinds of processing. 



So, initially you have this many number of key points on the same image 832 and it there 

are different orientations it shows a orientations and also you know the scale is associated 

with a position is associated with position has been shown scale is difficult to show in this 

particular diagram. 

And then after performing a gradient threshold you can reduced to a number 729 and then 

after performing that ratio threshold which means using this curvature analysis of the 

Hessian matrix that is called Hessian matrix of you know difference of Gaussian function 

and from there you can perform this ratio threshold, you can get reduce more number of 

key points. 
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So, this is a summary of a key point characterizations that it has a location, it has a scale it 

has an orientation. So, next we need to discuss that how to compute a descriptor for the 

local image region about each key point and that should be very highly distinctive and also 

it should be invariant as possible as for the variations such as changes in view point and 

elimination. So, we will continue this discussion in the next lecture. 

Thank you very much for your listening. 
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