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We are continuing our discussion on estimation of fundamental matrix and in the last 

lecture we discussed how the equations can be formed using the pairs of corresponding 

points in relation to the elements of fundamental matrix. And, by solving those equations 

you can get those elements of fundamental matrix. One of the things we are discussing 

that we require to perform coordinate transformation as the dynamic ranges of coefficients 

of those equations they widely vary because of the nature of the equations. 

 (Refer Slide Time: 01:00) 

 

So, we will continue that discussion and as we discussed that we will map the coordinate 

points to these ranges and bring them into these ranges. An example is shown here. Usually 

that is a very common case that no image coordinates vary between say 0 to 700 in this 

example and 0 to 500 there are other values. So, it is a typical range and there you can see 

product of those coordinates will have a very large dynamical range compared to single 

variables of coordinate points, single points. So, the example of a transformation will 

convert these coordinates into these ranges as given here.  

 



𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚 𝑖𝑚𝑎𝑔𝑒 𝑡𝑜 ~ [−1,1]𝑋[−1,1] 

You can see that this transformation is given in this form, that if I multiply this matrix with 

x’, I will get the transformed point. 

So, let me denote the transform point as say xt coordinate; that means,  

𝑥𝑡 =
2

700
𝑥 − 1 

𝑦𝑡 =
2

500
𝑦 − 1 

So, given (x, y) will be converted into this value. So, that would translate the origin to the 

(0, 0) in the middle of this (-1, -1) has disc affect. Anyway as discussed that you have to 

apply the corresponding computations to apply that transformation back into what you get 

as a fundamental matrix out of this computation. Then the inverse transformations are to 

be applied to get their original fundamental matrix in the respective coordinates of the 

image planes. 
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We will now continue, we will see what other aspects are there. So, as we mentioned that 

this is a paper where actually this particular technique is discussed and it has been shown 

that least square error method yields good results when we perform this transformation. 
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So, now we will consider the other aspect of this estimation, I mentioned that in the 

previous case that we have not applied the constraint of singularity on the fundamental 

matrix. So, the solution what you get that is not truly giving you a fundamental matrix 

unless it satisfies that singularity constraints. So, how to enforce that singularity 

constraint? So, that is what we will be discussing here. So, here you see that this constraint 

is expressed in the form of that the determinant of the matrix F should be equal to 0. And, 

also we know since its rank deficient, it should be less than 3 and in this case it would be 

2. 

det 𝐹 = 0 𝑎𝑛𝑑 𝑟𝑎𝑛𝑘(𝐹) = 2 

So, there is 1 zero particularly of this fundamental matrix we discussed also, that there is 

a epipole that is left a epipole. Epipole in the reference image reference plane image plane 

that is a 0 of this fundamental matrix that is a right 0. Similarly, there is a left 0 which is a 

right epipole; Now if I perform singular value decomposition of a fundamental matrix. So, 

we present singular value decomposition in this form. So, you see that U is a matrix which 

is orthogonal or we can make it also orthonormal which means if I take the column vectors.  

𝑈 = [𝑢1 𝑢2 𝑢3] 



So, let me represent U as a set of column vectors in this form, I will use this notation. So, 

each vector is a column vector which is of 3 cross 1 dimension; that means, U is a 3x3 

matrix. 

And, in singular value decomposition all these column vectors would be orthogonal or you 

can make it orthonormal also as I mentioned. Similarly, V is also another matrix whose 

column vectors are also orthogonal. So, you have V1, V2, V3 so, this is also orthogonal. 

So, any square matrix or even any matrix not only square can be decomposed into this 

form, into this particular structure in using singular value decomposition. So, in this case 

particularly I will discuss with respect to square matrix only for in this context so, it can 

be decomposed into this form. 

𝐹 = 𝑢1𝜎1𝑉1
𝑇 + 𝑢2𝜎2𝑉2

𝑇 + 𝑢3𝜎3𝑉3
𝑇 

So, U as I mentioned 3x3 then there is a diagonal matrix, and then V which is also a matrix, 

but we have to take transpose of this V. So, I can write also like [u1 u2 u3] and this diagonal 

matrix there in this case it is also a 3x3 matrix. You can see that if I multiply I will get a 3 

x3 matrix. So, diagonal matrix as we know that all off-diagonal elements will be 0 except 

the diagonal elements which should be non-zero not necessarily, that it should be non-

zero. It could be 0 also and we can apply no sign laws it is, it we can adjust the signs in 

both the sides so, that no one can make it all positive. 

So, if I shuffle these columns similarly shuffle the rows of [v1 v2 v3] in the same order 

still we will get the same matrix F. So, I will shuffle in such a way that  

𝜎1 > 𝜎2 > 𝜎3 

which means I will take those column vector those pairing U1 and V1 whose sigma is 

those singular value. So, 𝜎1 this is called as singular values whose singular value is the 

maximum here, then the next maximum then the minimum. So, this is how the singular 

value decomposition works and this is how you can see the matrix can be considered as a 

super positions of 3 rank 1 matrices. 

So, you are just summing up 3 rank 1 matrices so, each one is a 3x3 matrix. So now, what 

you can do that you have to estimate a singular 3x3 matrix which should be very close to 

your estimated F matrix, now that is a computational problem. So, F you have estimated 



from the data, but that is not singular. So, your objective is to get that solution F’ which 

should be very close to your estimated F which means you have to minimise the Frobenius 

norm. 

That means, element wise if you take the square of their differences and add them and take 

the square root of the sum that is a Frobenius norm. It is as good as saying that this is L2 

norm when you are representing a matrix in the form of a vector by concatenating all its 

rows or its columns in whatever way. So, the solution lies in the fact that this should be 

minimum that theory says that when you set the minimum singular value to 0; that means, 

you are setting to 0 so, you are ignoring this part. So, once you set it 0, now then this F 

prime is a singular matrix because that is one of the conditions one of the signature of a 

singular matrix. 

That if you perform singular value decomposition, then at least one of the singular value 

should be 0 and if I reorder them all those singular values in order of their increasing 

values. And, as I mentioned that we enforce that singular values should be positive we can 

enforce positive point 0 so, the minimum values should be 0 in that set. So, in this case 

number of 0s or number of non-zero singular value will also provide us the rank of that 

matrix. So, since the rank of this fundamental matrix is 2 so, we are keeping two non-zero 

singular values and only setting the minimum singular value to 0. 

So, this becomes your solutions now and you have applied the singular constraint in this 

fashion. So, this is that we are computing singular value decomposition. 
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𝐶𝑙𝑜𝑠𝑒𝑠𝑡 𝑟𝑎𝑛𝑘 2 𝑎𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛, 𝐹′ = 𝑢1𝜎1𝑉1
𝑇 + 𝑢2𝜎2𝑉2

𝑇 + 𝑢3𝜎3𝑉3
𝑇 

 



 

And this is the closest rank 2 approximation from that estimated F matrix. 
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So, one of the nice example that I could get from the book of you know Hartley and 

Zisserman that is “Multiple view geometry in computer vision”. You can see there are the 

effect of singular F and non-singular F by showing how epipolar lines behave in a 

particular image plane. So, this is a right image plane with respect to a left image plane 

which is a reference plane and we are drawing the epipolar lines of all the points 

corresponding points of the left image planes in the right image plane. 



It is expected that all epipolar lines should be converging to a single point and that is the 

right epipole of that stereo system. So, you can see that if it is non-singular then they are 

not converging. Only their convergence is ensured if it is a singular. So, that is why 

geometrically also this property needs to be satisfied and that is why this constraint is so 

important in this respect. 
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Now, if I consider the estimation of essential matrix there is another interesting feature, I 

told earlier also the number of independent parameters in essential matrix is 5. So, which 

means there are few more constraints here. So, let us find out what are those constraints.  

det(𝐸) = 0 

So, just remember that essential matrix is the same fundamental matrix when your camera 

is calibrated which means the calibration matrix of the camera. And, you can convert all 

the image coordinates into the canonical form and express the fundamental matrix just by 

using the rotation and translation of the word coordinate to camera coordinate system those 

parameters. So, extrinsic parameters are the only constraints and since there are 6 

parameters and also the scale is another constraint so, there will be 5 independent 

parameters in this case. So, suppose you have a calibrated camera; that means, you know 

the calibration matrix. So, you can take and make that conversions and then you apply the 

same estimation technique. And, whatever fundamental matrix you have estimated that is 

essentially an essential matrix because, you get this canonical coordinates and you get in 



that form of the fundamental matrix. So, there also we need to perform singular value 

decomposition to enforce the constraint of singularity. 

But, there is one interesting property of essential matrix that the two singular values that 

you get here should be also equal.  

𝐸̂ = 𝑈𝐷̂𝑉𝑇 , 𝐷̂ = (
𝑎+𝑏

2
,

𝑎+𝑏

2
, 0) 

So, the way you can enforce is that you consider the average of those two values (a, and 

b) and set them to the 𝜎1 and 𝜎2 in my previous technique whatever we discussed. You 

just make these modifications when you are estimating an essential matrix. 

 (Refer Slide Time: 16:56) 

 

Let us discuss now how to estimate fundamental matrix using 7 point correspondences 

which is the minimum number that is required as we mentioned earlier. So, if you have 7 

point correspondences there would be 7 such equations involving the elements of the 

fundamental matrix as we also discussed in our previous slide. So, we can see that each 

row is also formed in the same way what we considered earlier. And, there are 7 such row 

corresponding to each of the 7 pairs of corresponding points. So now, if you would like to 

solve this as you can see this is a set of homogenous equations and since the number of 

elements in F is 9 and you have 7 equations. 



So, the rank of this matrix is 7 and here we can use the singular value decomposition of 

this matrix A. So, we consider this matrix is A and if I perform a singular value 

decomposition then we will be naturally expecting there will be two 0s in this case. And, 

the U and V you can consider know their dimensions in this form and V there will be 

corresponding 0 vectors of this particular matrix A. So, those 0 vectors are the last two 

columns of V and they can give you the solutions of the equations. Because, 0s are the 

solutions of A are they are the solutions of these equations and they are the corresponding 

fundamental matrix.  

But since there are two such zero vectors so, actually the solution is a linear combination 

of these two zero vectors. So, we can express the solution as a linear combination of two 

zero vectors F 1 and F 2 as it is shown here and this linear combination is given in this 

form. So, where lambda is any scalar constant, but you have to determine exactly which 

linear combination which lambda value.  

|𝐹1 + 𝜆𝐹2| = 0 

Because, the fact is that the determinant of this should be equal to 0, it should be rank 

deficient matrix which means if I take the determinant of this matrix, if I take the 

determinant that should be equal to 0. And, since the determinant it is not automatically 

rank 2 we have to solve for lambda which will give you the 0. And, it will be a cubic 

polynomial because it is a 3x3 matrix and in cubic polynomial we would like to get a real 

valued solutions of lambda. And, there are two situations either there will be one real 

valued solutions or there will be three such solutions. So, a maximum we have three such 

possibilities of fundamental matrices in this case that is a technique we discussed. 
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So, the essence is that you have to perform singular value decompositions or rather eigen 

decomposition of the AT matrix here. And, and solve for the lambda which is the 

coefficient of linear combination of the eigen vectors by enforcing the determinant of the 

combination linear combination should be equal to 0. So, let us consider now the other 

aspect of the fundamental matrix. So, how fundamental matrix can be represented in 

different parametric form. So, we have already seen how many number of independent 

parameters should be there, but not necessarily your representation will have that intrinsic 

characteristics. 

So, it you can represent with more number of parameters, but then you have to enforce the 

constraints; that means, the independencies among those parameters needed to be enforced 

there. So, in the estimation process and this is not always ensured and a post estimation 

those operations are taken care of as we discussed that how we can make the determinant 

0 for F. So, over parameterization representation could be in this form; that means, 

𝐹 = [𝑡]𝑋𝑀 → {𝑡, 𝑀} → 12 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

𝑒 = [𝛼 𝛽 − 1]𝑇 

where t is a epipole. And, in this form you see that there are more number of parameters 

like you have epipoles t and M. 

𝐹 =

𝑎 𝑏 𝛼𝑎 + 𝛽𝑏
𝑐 𝑑 𝛼𝑐 + 𝛽𝑑
𝑒 𝑓 𝛼𝑒 + 𝛽𝑓

 



So, M is 9 and t is a 3x1 so, we can write 12 parameters. Now, we know essentially there 

are seven independent parameters. One of the interesting representations which follows 

this parameterization is this one, you can see that how many independent parameters are 

there a c e b d f 6 then alpha and beta. So, there are 8 independent parameters. The 

interesting part is that the singularity constraint on f; that means, the determinant that is 

equal to 0 here because if I take the linear combination of these two columns; the third 

column is a linear combination of these two columns. 

𝐹 =

𝑎 𝑏 𝛼𝑎 + 𝛽𝑏
𝑐 𝑑 𝛼𝑐 + 𝛽𝑑

𝛼′𝑎 + 𝛽′𝑐 𝛼′𝑏 + 𝛽′𝑑 𝛼𝛼′𝑎 + 𝛼𝛽′𝑐 + 𝛽𝛼′𝑏 + 𝛽𝛽′𝑑
 

So, we know that in this case this is a rank deficient matrix and one of the column is 

dependent of others. So, also its determinant should be equal to 0 that is the property of 

determinant. And, if I multiply this F say with[−𝛼 − 𝛽 1], you will find that you are 

getting 0. So, you perform minus alpha a minus beta b plus alpha a beta b that is 0 and in 

this way. So, what does it mean? It means that the left epipole; that means, 0 of F is this 1 

so, which means it is an epipole. So, alpha and beta has an interpretation in this form or 

you can see alpha beta minus 1 so, it is because you are multiplying F e should be equal to 

0. 

So, I think this is fine. So, it should not be right epipole e, it should be the left epipole e it 

should be this one ok. So, let us consider the next one that is both epipoles as parameters. 

So, you have this number of parameters a b c d e f alpha beta. Now, this is another 

representation you can see that how many number of parameters you are having here. You 

have a b c d then alpha prime beta prime and alpha and beta; that means, here also you 

have 8 parameters a b c d alpha prime beta prime and alpha beta. So, a b c d alpha prime 

beta prime alpha beta. 

Now, in this case you can find out that if I multiply F with once again with alpha beta 

minus 1. So, here also you can see that the third column; that means, this column this is a 

linear combination of first two columns which is alpha into this and beta into this will give 

me the third column. And, alpha in yeah, and also the third row is a linear combination of 

the first two row which is alpha prime into first row and beta prime into second row will 

me the third row. So, if so alpha beta minus 1 that should be equal to 0 like the previous 

one. And, then if I perform on the other way if I perform the multiplication alpha prime 



beta prime minus 1 with F that should be also equal to 0; that means, this becomes your 

right epipole and this becomes your left epipole so, in this set up. 
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So, once again now we have the same problem of representation. So, e should be alpha 

beta minus 1 and e prime should be so, here also you have a problem. So, please note this 

corrections e should be alpha beta minus 1 and e prime should be alpha prime beta prime 

minus 1 as per my diagram. 

So, let me stop here and we will continue our discussion in the next lecture. 

Thank you for your listening. 

 

Keywords: fundamental matrix, singularity constraint, essential matrix, parametric 

representation. 


