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So, we will continue our lecture on single view camera geometry. We are discussing

about different kinds of homography that exists in a single view camera, when you have

multiple view images of the same scene by single camera.
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So, right now, what we are going to discuss suppose, the camera center is fixed, but you

have rotated the image plane about its vertical axis. So, you consider this scenario that

you have an image plane and you consider a center C and there is an image formed in

this plane which is given by x.

Now, if I rotate this image plane say by an angle  about an axis. So, in that case you

can consider another image plane due to this rotation and you will get an intersection

with that image plane with a point 'x in that image plane of that rotated camera. So, now,

we will see that there exist a homography between this two points. Already, we

discussed this particular feature, when we discussed about the projective transformation.

In terms of camera matrix parameters or camera matrices, we can relate this homography.



So, consider in this case, the first position as a reference position of the camera and its

projection matrix is given in this ( ]0|[IK ) form. So, we can note that this is almost a

camera centric coordinate system. This is a camera centric coordinate system, but you

have a calibration matrix. so, you have a calibration matrix’s involved in this case. So,

in that way I mean you can consider that ; it has those parameters of calibration matrix

involved in this case.

XRKx ]0|['

So, this is the projection matrix that we get and when you rotate this camera everything

remains the same, so there is translation parameter; translation of origin, it is 0, because

there is no translation of origin in that case and that is reflected by this, values 0 column

vector, but it has the rotation matrix. This R is a matrix, l which denotes a transformation

due to the rotation about this vertical axis or .

So, I can write this projection matrix of the second position as ]0|[RK . So, this is the

projection matrix. So, if I consider that I can simplify this by considering this so, you

know that here I can equivalently right it as KKRK 1 , because KK 1 is nothing, but it

will give you the identity matrix. So, I can write this also and as we know that ]0|[IK ,

this is the projection matrix of the first camera.

So, this is what is giving you the image point of the first camera. So, finally, 'x is related

with x with this kind of relation. So, it is a matrix multiplication 1KRK that you need

to multiply with x and that matrix itself is the homography. So, this is how the

homography is established between these two views and with their corresponding image

points of the same scene point. And there are certain interesting properties of this

homography matrix, because this rotation matrix has a interesting property like first thing

is that it has a same eigenvalue of this rotation matrix and rotation matrix eigenvalues are

well defined. Because of this property of particular structure of the rotation matrix

which rotates at an angle  about an axis.

So, it should be  ,  ie and  ie . So, it is a complex quantity as we can see and  is

a scale factor. So, it is in eigenvalue or even I can write it as ie1 and ie . So, it is a

scale value.



Now, H is also known as conjugate rotation homography and can be used to measure the

angle of rotation of two views. And the eigenvector corresponding to the real eigenvalue,

which is  it is shown here as a  , which is a scalar, which is also indicating scale value

on this set of eigenvalues. So, that eigenvector is the vanishing point of the rotation axis.

So, that is another interesting information. So, we will let us see that how this

homography could be used in relating different imaging.
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Some of the applications that we would like to discuss of projective transformation

associated with this single view camera geometry, what we are discussing earlier. So,

already we have considered the corresponding, affine rectification or stratification tasks

that is involved using the homography with the images. Now, we can point out those

applications once again here.

So, we can generate synthetic views given a view. So, as we did in the previous example

of my lectures. So, you have an oblique plane where with respect to your reference view,

if there is any oblique plane; that means, it is you consider our natural tendency is to

look at fronto-parallel planes. And any oblique sensation of that kind of sensations will

be coming with respect to that oblique fronto-parallel plane.

So, if you have a plane which makes an angle with respect to fronto-parallel plane and

there is some object planner object or image on that plane. So, we can apply this

homography to straighten out it, to make it on the fronto-parallel plane. So, you consider



this particular example so in a fronto-parallel view we by keeping the same aspect ratio,

we can redefine the image points and then we can compute the homograpghy. This

example we have already discussed. So, we can compute and we can wrap the source

image with H.
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Another kind of application could be panoramic mosaicking of images. So, consider you

have a wide view, but at a particular time you have only a limited view of taking

images. So, you have a wide panoramic scene and with the single camera, you want to

capture the whole scene, but your camera is restricted by only a small viewing angle.

So, you have an image plane, where only those points, which are intersecting with

respect to the image plane, which is been sensed by the sensors of your camera those are

only captured. So, you may in that case capture a series of images by rotating the camera.

So, getting view, getting images from different views and then again perform the

homography transformation with respect to a reference plane and put them under the

same reference plane.

So, all those images; so they would look like as if images on the simple planar plane. So,

that would that is the task of mosaicking. So, we discussed in my previous slide that how

rotation of an axis lead to the homography. So, you consider here that this is your

reference plane and these are the other views from where , you are looking at from your

camera.



So, you apply homography from points on this view to this view say suppose, this

homography is 1H and again apply homography from point from this view to this view

and then all the points are registered on the same coordinate system and you can get the

larger image. So, that is how you can get a panoramic mosaicking, using this kind of

computation.
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So, let us discuss the concepts of vanishing points in imaging also, I have referred to

vanishing points in my lecture previously also. Vanishing points with respect to

homography, vanishing points; that means, with respect to projective transformation,

even for vanishing point with respect to the imaging from the camera transformation that

also have the similar kind of features. So, vanishing points are nothing, but images of

points which are at infinity.

You consider so, let me give you an analogy with respect to an one dimensional scene.

So, an one dimensional scene can be thought about as an infinite line, any points on an

infinite line. So, you are considering this as an infinite line and points are lying on it and

we are projecting any point with the projection rule is that there is a center and take any

point in this line and then you draw a ray from that line to that center and that would

intersect on your image plane. So, in this case it is also image line. So, the point of

intersection of this ray is giving you the image of this particular scene point. So, scene

point as I mentioned is one dimensional space.



So, if I go on drawing this kind of imaging for all the points in this line. So, we will see

its effect. Suppose, you take another point, once again this is a new image point then

another point. So, these are images corresponding images that you are observing and if

you go on doing these things. Finally, as you understand there is a limiting point beyond,

which you will not get any intersection point, because once your projection ray becomes

almost parallel then two parallel lines, they only intersect at point at the infinity.

So, what we can observe here that if you go on doing this finally, there exists a limiting

point V which is defined geometrically in this way. Consider a line which is parallel to L

and passing through that center C and then that line when it intersects image line at point

V that is the vanishing point, because any other point you choose from this line, it will

still intersect at a point which is not going beyond V in upwards in this case.

So, this is the interpretation of a vanishing point, when we restrict our scene as a one

dimensional straight line and also our imaging plane imaging structure is also a line. So,

we extend this idea for imaging of a three dimensional scene on a two dimensional plane

and we will see that what kind of conditions we get as I mentioned this is the vanishing

point and this is the summary that vanishing point of a line L is the intersecting point in

the image plane parallel to L and passing through the camera center C.
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So, if I extend this concept as I was mentioning consider a three dimensional line in a

three dimensional space this line is defined. Once again, your imaging geometry is

defined by a center of camera or center of projection C and there is an imaging plane.

And if I apply the similar projection constructs, so you will find all the projected point on

the image plane, they also lie on the line. And finally, when the ray projected ray

connecting through the camera center C, it becomes again parallel to the direction of line

L then I mean there is that their intersection point would be a point at infinity, which

means it that is the point at infinity in that direction L. And that is the, and their point of

intersection and the point of intersection of that ray with the image plane acts like a

vanishing point.

So, let me see the construct here in the similar fashion will go on constructing and finally,

as I mentioned that the line parallel to L which is intersecting at the point V that becomes

the vanishing point. You note v, r, q they all lie on a straight line, because it is an image

of a straight line and that would be also a straight line.
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And so, even you can move as you go further and further still you will never cross v in

that directions, in this particular line L in that direction. So, that is the vanishing point of

the straight line L; so, this line is parallel to L. And as we already discussed that how a



point at infinity in a particular direction d is denoted, it is 

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. So, d is the direction of

line L and if I apply the projection of that point, if I apply that mathematical model,

where I am assuming that the camera model as a simple canonical form like ]0|[IK

then into 







0
d

that is a column vector, we will get Kd , that is the vanishing point.

So, in this case you know you note that the vanishing point is independent of the,

translation of this particular or independent of the center or the position of the camera

center. So, that is the camera position. So, if it is not rotated as you can see from the

transformation matrix that here, we have taken only identity matrix, which means there is

no rotation. It is a orientations of the axis remains the same, only you may translate the

camera, but still if I apply that also.
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So, if I considered in that transformation, the new camera matrix after translation would

be something like this K I say translation. So, we may have a vector t and then, if I

consider the projection of vanishing point 







0
d

, so you understand d is a column vector

and then what happens. So, t is also a column vector in my representation. So, this is also

K into d. So, this how a vanishing point you know is computed and you could see that is

the same point.

So, this is an important mathematical explanation that why we see the points at distance

and there is almost they are always at the same position, because if you also move in

with respect to our frame of reference they do not move, they also move along us. Like if

you consider when you are moving and watching the moon at a distance, you will find in

your frame of reference, the moon always remains at the same point, because you know

if your motion does not involve any rotation, it is a simple translatory motion.

So, it will look, it will be dimmed like it is not. It is also, as if it is also moving with you,

which means it remains at the same location with respect to you. So, this is one you

know nice explanation of those phenomenas.
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So, this is the follow up of that discussion that it is independent of camera position

vanishing points if they are not. if the camera is not rotated. But you know when you

have a rotated camera and then also you can get this expression, very simple expression

by applying the same mathematical logic that if I rotate the camera center so your

projection matrix can be written as say KR and then so, I think this was our CR ~ that is

the affect of moving the camera center at position C~ .

So, suppose this is the corresponding projection matrix after the rotation R and moving

it at a camera center C~ then if I apply the projection of vanishing points then I can

simply write it as KRd. So, that is what is shown here, you can see this is the expression

here.

So, the implication is that if I know the vanishing points, there are ways by which you

can compute the vanishing points you may take straight lines, in parallel straight lines

and take that images and find out their point of intersection, that would give you the

vanishing points. And then if you know those vanishing points and also if you know the

camera parameters like calibration matrix K then we can compute rotation. So, this is

one of the interesting implication of this result.
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So, this is how even the direction of the corresponding line also can be computed from

this relationship that is you can apply K inverse v normal to this. So, you can apply this

particular relationship you can translate them in this form. You can also get the direction

of the straight line in a three dimension, if you can get it is vanishing point knowing it is

corresponding calibration parameter.

And also similarly, you can get the in the reference frame you can get another direction

of the straight line with respect to the reference frame. So, from there you can get the

rotation matrix. So, if the relationship between these two directions again, if they are

related with the same transformation R and there are two independent constraints on R

and it can be computed using this relationship.

So, this constraint let me explain that it is an orthonormal matrix that is the first

constraint and there is a angle of rotation which is involved. So, you need to determine

that. So, with this you can find out.

(Refer Slide Time: 21:23)

So, now let us consider another kind of geometric information or interpretations with

respect to imaging. You considered a plane  and which is specified by its unit normal

there is a direction that normal is known to us and of course, to specify a particular plane

you need to know its point. So, in this case let us consider, we know a set of straight

lines in this plane  , those are also specified. So, if I take the images of these straight

lines, what will get.



So, if you consider a plane which is parallel to this plane; that means, whose normal of

the plane is also the same in n̂ as it is shown and so, that is the construct. it is a parallel

plane through camera center and we can denote this plane as you know ll as it shown

here. So, what you are getting here, you are getting the vanishing points of the directions

of M; that means, all parallel lines or parallel to that direction it has a vanishing point say

at MV and similarly LV is the vanishing point related to the direction specified by L

which is lying on this plane  . So, any line parallel to that it has its direction LV .

So, if I connect these two points you will get a line on the image plane and infact that is

the vanishing line the interpretation is that all the vanishing points of the lines lying on

that plane  that would lie on that line. So, even any line or any parallel for any plane

parallel to it, all those lines in those directions they have the same vanishing line. So,

that is the interpretation. So, we can define then the vanishing line L in this way that it is

a intersection of these two planes; that means, a plane ll , which is parallel plane

through camera center, parallel to the plane which we are mentioning here.

So, it is a plane which is parallel to this and which is passing through camera center and

when it intersects with the image plane, then the intersecting line two planes they

intersect at a line. So that intersecting line is a vanishing line that is the geometric

interpretation of vanishing line and it is related with the plane. So, it is the vanishing line

with respect to this plane. So, this is the interpretation.

So, from this we can compute also the normal of the plane because if you know the

vanishing line, then I can compute the corresponding plane itself by using that same

transformation lPT and would give me the normal to the direction of the plane for which

this line is the vanishing line. And if it is a reference camera; that means, if the camera is

represented by this projection matrix ]0|[IK , that is the projection matrix of this camera.

So, if I multiply with l , it would be simply lK T . So, for unidirectional you need to do

the normalization of that vector.
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So, let us again workout an exercise for involving this particular computation. Suppose,

you have a camera which has this following projection matrix that is P which is given

here as you can see, and suppose you have a line in the image coordinates space by the

equation 543  yx . So, we have to compute the normal of the plane for which the line

appears as a horizon. So, you understand your horizon should be the vanishing line of

that plane which is the parallel to our particular view.

I mean where this w which is having this particular vanishing line. So, you would like to

get that plane and that is intersecting with the image plane with respect to this line. So,

that is what we would like to find out.
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So, let us see the corresponding solution you have this projection matrix. So, the line is

denoted by this column vector
















5
4
3

and plane formed by the camera center and this

line as you know it is lPT . So, if I perform this computation you have to transpose the

camera matrix and you know you should multiply with this l then you will get this kind

of this is the equation. This is equation of the plane and if I would like to get the normal

of this plane. So, I should restrict myself to the first three elements of that column vector,

as you know that this equation of the plane is represented as 0587247  zyx . So,

this particular vector will provide you the normal. So, you have to normalize it and then

you can get that unit vector. So, that is what will be doing.
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So, all planes parallel to this plane have the vanishing line l . So, that is the interpretation

and the normal can be computed in this fashion. So, we can finally, we can compute the

normal as we can see into this computation.

(Refer Slide Time: 27:37)

So, how do you compute a vanishing line in that case? You have to identify groups of

sets of parallel lines in a plane at different directions. We can obtain their vanishing

points and get the line among them. So, in this way you can get the vanishing line.
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So, now I will be summarizing the content, summarizing those particular highlights

which we discussed in this topic of single view camera geometry. First thing as you can

see that pinhole camera model, it provides a projection matrix which maps a 3

dimensional point to an image point and projection matrix has some interest. I mean

some known structure that is it is 43 matrix. It is a mapping from 3 dimensional world

to a 2 dimensional plane and it has a degree of freedom 11; that means, there are 11

independent parameters.

So, as you can understand 43 means there at 12 elements in that matrix. So, since you

can scale those elements still you get the same mapping. So, one of the element is a scale

factor. So, rest of elements is the independent of that scale factor. Then out of this 11,

there are 5 intrinsic parameters and 6 extrinsic parameters and you require minimum 6

point correspondences to estimate this projection matrix. There is another kind of

projection matrix which we call affine projection matrix.

So, in this case instead of instead of a converging projection rays on a center of

projection or camera center, we consider the images are formed by parallel rays and your

center of camera lies at an infinity.

So, the structure of the projection matrix for this kind of affine projection has a unique

distinction. It should have a colour it should have a row with [0 0 0 1] or any scale value

in the place of 1 and then its degree of freedom is, because if I picks a scale value at 1,



rest others are the independent parameters. So, if I take out these four elements from 12

it remains 8. So, it is degree of freedom is 8 or independent parameter is 8 and each point

correspondence provides me 2 equations. So, , we require minimum 4 point

correspondences to estimate this affine projection matrix.

(Refer Slide Time: 30:13)

Then we discussed about the geometry which is encoded in a projection matrix like

projection matrices can be represented in different forms to express these relations. As

we can see that we can have a form of ]|[ 4pM these are the notations we have used M

is a 33 sub matrix 4p is a column vector. It is a 4th column vector or projection matrix

can be considered as a set of 4 column vectors p first second third fourth, they are

denoted by 4321 ,,, pppp or it can be considered as a stack of rows. Those are row

vectors.

So, in this way projection matrix could be represented and some of the interesting

information about the geometry, which are encoded, which can be retrieved from this

values of projection matrix itself. Like camera center is given by 4
1pM  in its world

coordinate itself and for affine projection matrix you have to take the right 0 vector of M

and which is you know interpreted as a direction.

So, it would give you the direction of that parallel rays which is forming the images.

Then we discussed about vanishing points in this case in the imaging. For example, X



axis vanishing point of X axis is given by the first column vector 1p , then Y axis by 2p

and Z for Z axis it is vanishing point image of that vanishing point is at 3p and image of

world origin is at 4p . And there are so special planes, which we can recover from the

projection matrices elements particularly from its rows.

So, some of the special planes like principal plane is given by this relation 03 XrT , then

from there since, it is a principal plane its normal will give you the principal axis. So, the

first three elements of the vector 3r , it would give you the directions of the normal and

then principal point is the intersection of the principal axis with image plane which is

expressed by this relationship. M is a corresponding you know sub matrix or projection

matrix 33 sub matrix. We need to multiply the directions of the optical axis with M

and you will get the principal point. The plane formed with the x axis of image

coordinate system and also the center of projection.

So, with the centre of projection and x axis this will make a plane 3 dimensional, in the 3

dimensional space and given by this relation 01 XrT . And similarly, a plane formed by

y axis of image coordinate system with again with the center of camera it is 02 XrT .

(Refer Slide Time: 33:21)

So, there are different other geometric derivatives from projection matrix. First thing is

that you can form a projection ray at an image point, you can from its three dimensional



equations of that particular line, it is direction ratio is given by this expression xM 1 .

You note that x is a image which is expressed in the homogenous coordinate system of a

2 dimensional projective space.

So, this would give you a direction ratio in a 3 dimensional structure, 3 dimensional

space and any point on the ray will define a line incidentally that one has to pass to the

camera center, and you know that the camera center can be computed in this form you

have 4
1pM  , that would give you the camera center and this is how the projection ray

is formed.

Similarly, you can also compute the plane formed with a line in the image plane with the

camera center, it is given by lPT and vanishing point of a line with direction d is given

by Md . So, with this you know let me conclude this particular topic here. I hope you

have learnt some features of single view geometry; next, will be discussing about stereo

geometry or two views camera geometry.

Thank you very much for your listening.


