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Lecture - 14
Camera Geometry Part - IV

We are discussing on single view Camera Geometry and we have discussed how
different information can be obtained from a projection matrix. Now, let us discuss
some of the exercises for your practice, solve some of the problems related to that it will

give you a better insight.
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Exercise -1

Consider the following projection matrix.
=9 2 3 1

P:[3 -9 61 ‘
2 6 -10 1

Compute the following:

(i) Camera center

(if) Vanishing point of X-axis.

(iii) Image point of origin.

(iv) Vanishing point of the line with the
direction cosines 2:3:4.

So, consider this problem that you know you have a projection matrix which is given in
this form, and you need to compute the following, like you need to compute its camera
center, vanishing point of X-axis, image point of origin, vanishing point of the line with

the direction cosines say 2:3:4

Now, here I would suggest that you may give a pause to my video lecture and solve this
problem and then again resume it. So, I will discuss this particular solution in the next

slide.
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So, as I have shown that this is a projection matrix what you have considered. A 3x3
sub matrix M is defined in this form and then the other column vector that is a p, column
vector. So, we can compute the camera center from this expression that we have to invert
the matrix M and then compute —M ~'p, to get the camera center directly in the world

coordinate system.

So, in this case if you carry on computations of inversion, the steps that you need to
compute the cofactor of the matrix, you need to compute the determinant of the matrix
and then the inverse can be computed in this form; that means, you have to take the

transpose of the co-factor and then divide it by determinant. And then finally, if you

perform these computations of —M ~' p, you will get C in this form.

So, you should note that this is just in the world coordinate system itself you need not
convert, this you should not convert it into a non-homogeneous coordinate system then it
will be a wrong. So, it is directly it is giving you the result in a three-dimensional

coordinate system as we understand.
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Let us considered how do you compute the vanishing point of X-axis. As I discussed
earlier that for vanishing point of X-axis we have to multiply the projection matrix with
the directions along X-axis and the additional scale value, scale dimensional is 0 because
that represents a point at infinity along X-axis. So, you have to multiply projection

matrix with this vector. I am showing for the gravity in the row form. It is a column

vector [1 0 0 O]T and then you will get p, and which means a you will get

particularly you will get [—9 3 2]T .

So, this is related with [-9 3 2] that is a column vector. And you should note that

this is actually in the homogeneous coordinate system in the image coordinate system.

So, if I would like to get them in our two-dimensional coordinate system, non-

: : -9
homogeneous coordinate system I have to express the x coordinate as - and y

. 3 . . . . .
coordinate as 5 So, in a image coordinates in our understanding of normal two-

dimensional coordinate system is this pointisat (-9/2, 3/2).

1
Similarly, for image point of origin that is the 4th column vector, so you will get |1
1

So, if I adjust the scale it is the coordinate 1 and 1 1. And then the vanishing point of the



line with the direction cosines 2:3:4 . Once again this shows that, what is the point at
infinity along the directions which is expressed by the vector . [2 3 4 O]T and if [
multiplied with projection matrix P. So, you will get a vector [0 3 —18]. Once again

this is in the homogeneous coordinate system which means this is equivalent to a

coordinate (0, —3/18) in our two-dimensional real space.

(Refer Slide Time: 04:50)
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i Exercise-2

» Consider the following projection matrix of
an optical camera based imaging system.

8 5 40
P=(7 8 9 0
1 -5 81

Answer the following with respect to 7.

(a) Given an image point (2,7) in R2, compute its
corresponding scene point if it is known that the point
is at a distance of 40 units from the center of camera.

So, let us considered another example; here also you considered a projection matrix
given in this form and then you are asked to do this computation that if you have an
image point (2, 7) in R2 or in R square that is normal to dimensional coordinate
convention you have to compute its corresponding scene point if it is known that the
point is at a distance of 40 units from the center of camera. So, once again I would
request you to pause the video at this point, solve this problem and then again resume it.

I am going to discuss this solution in the next slide.
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So, here I have shown you some of the structures of this solution. As you can see that
projection matrix is represented by those sub matrixes M and p,, M is a 3x3 sub matrix
p, 1s that column vector. So, camera center first you need to compute because once you
have to compute the corresponding projection ray. What we required? We required the
camera center C . So, require the camera center C and we required the direction cosine
(I,m,n). So, C is given by this (C= —~M ' p, ) relation. So, you have to compute M '
and then —M ~'p, will give you corresponding C.ltis again in the three-dimensional

2
coordinate space whereas, the direction cosine should be given by M| 7 |.
1

So, (2, 7) was the image point and along that, directions in the homogenous system
coordinate system it is (2, 7, 1). So, if I perform these computations, I will be getting this
particular direction (/,m,n). And then any point in this ray which is lying at a distance

/

£ m | . So, you see

NP +m?+n?
n

that this is nothing, but the unit vector along the direction (I,m,n). So, we can always

4 can be expressed in this form which is X (w)= C+

express in a parametric form equation of this straight line in this form. So, that is how



you can get the corresponding projection ray. You can put 4 =40 and that would give

you the corresponding ray. So, this is the solution of this point.
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We continue the same problem. Here you are asked to compute the principal plane of the
imaging system with the projection matrix. So, if I start doing this operation how do you

get the principal plane. It is as we know this is the principal plane is given by this third

row. So, which is given by 7 X =0.

So, you will find that this solution is basically it is an explanation one again. Image point
of a point in a principal plane would be in this form, so it should be 7 X =0. So, it is a

last row of P and it is given by (1,-5,8,1). If [ write in our normal convention of planner

equation itis x—5y+8z+1=0. So, this is how you get the principal point.
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So, now we will continue our discussions in this topic. So, let us consider another
scenario where camera center is at infinity. Now, in this case as we have discussed
earlier also that M would be singular that is the first thing, because in that case the 0 of
M will give you the center and the third, fourth dimension of that center that is a scale
factor would be 0. Now, there are two situations in this case it could be an affine camera
or it could be non-affine camera. So, we are not interested on non-affine cameras for this

kind of situation we will be consider in only affine camera.

So, one of the simple characteristics of affine camera is that its last row is in the form of
[0 0 0 1], you can use any other scale factor instead of one non-zero value, but
canonically you can put it as [0 0 0 1]. Then every other element gets fixed with respect
to that scale 1. So, the property of affine camera is that first its principal plane is a plane
at infinity that is a principal plane; that means, all the points which are lying at infinity in

the along many directions. They are lying at in the principal plane.

And it camera center also lies on the principal plane naturally. So, point set infinity are
map to point set infinity. So, if you consider any points which are at infinity, its
vanishing points, so called vanishing point; that means, if you take the image of that
point that would be also at infinity; that means, it is scale value would be also 0 which
means that as you understand that intersection of parallel lines of a non homogeneous

coordinate at parallel lines in our Euclidean geometric sense can be explained as



intersection at a point at infinity which is represented in this homogeneous coordinate

system where scale value is 0.

So, still the lines after transformation, which means after getting imaged still they
remain parallel. because images of those lines are also their intersection is also at
infinity. So, that is one of you know major property of this particular things and it

explains why a points at infinity, still map to a point at infinity.

(Refer Slide Time: 11:28)
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So, the affine projection one of the simplification of the camera relationship can be done
in this way as you can see that, in this form in affine camera this is the world coordinate
system in the non-homogeneous coordinate system which means it is simply a three-
dimensional point. You are multiplying this three-dimensional point by a matrix in the
form of 2x3 and then you will get another vector three-dimensional vector and this is a

parameter which we called as a translation parameter for this affine transformation and

then you get the corresponding image point. So, this is a image point of X.

So, that is also in the non homogeneous coordinate system because this will give you
2x1. So, this is actual image coordinate what will get you do not have to do any scale
adjustment. So, this is a very simple relationships in affine geometry where you can
express the relationships all in the sense of Euclidean space, Euclidean space this
relationships in the sense of three-dimensional Euclidean space to a two-dimensional

Euclidean space of the images.



Now, this can be explained how do you get this kind of structure, if I considered the
canonical representation of the affine projection matrix where you can see that the last
row of this projection matrix is given by [0 0 O 1] vector. So, if I do the matrix
multiplication and consider the corresponding sub matrix multiplication then it is
equivalently coming in to this point. So, this simplifies the relations between the
projection, the image point with the world coordinate point and it simplifies also to the

computation of finding out this affine matrix.

So, let us see how you can do it. So, you can express this equation in the following form

¥=M, X+t

2x3

M, is a sub matrix that is a matrix represented above and X represents the same point

plus t. So, affine projection, so how many independent parameters are there? As we can
see that thistis 2x1 vector and this(M) is 2x3 so there are 8 parameters. So, there are

8 independent parameters or 8 degrees of freedom.

So, this is the final conclusion about or this is a advantage what you have, you required
less number of points to estimate this particular projection matrix because you have only
8 independent parameters it requires 4 point correspondences each point correspondence
is giving you two equations, one for x coordinate another for y coordinate. So, if I have 4
point correspondences I will get 8 equations and I can solve this problem. So, that is the
minimum requirement. If you have more number of point correspondences then you can

perform least square estimate, where which we will discuss in the next slide.



(Refer Slide Time: 14:58)
m ol i G e
[x] = m: m:j m;Z][X]H
i Affine Camera

E = M2x3:‘l’u +f
Camera Center=» Direction of parallel rays (d)

y

9

Bl mee ¥, , %

So, this is how will be discussing. So, first thing is that in the affine camera center it lies
at infinity and it is a direction of parallel rays. So, geometric interpretation is that: in an
affine camera the imaging takes place using parallel rays, instead of considering a
particular center where all the rays are connecting to that center that is a perspective
projection geometry. In affine geometry you considered any direction any parallel to any

direction and any particular direction, let me explain.

Suppose this is your image plane and suppose this is your scene point X and say the rule
is that this is a direction of the vector d; so, all lines parallel to the. So, X, image of X
would be that you draw a parallel line along this direction and where it intersects that
becomes a image of this point. So, this is a interpretation of imaging for affine camera

which is the parallel projection in the case of imaging geometry.
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So, this is the relationship with M and d, you can get d in this by exploiting this equation
M, .d =0 . So, the interpretation of t that it is the image of the world origin and its

principal plane or affine projection matrix is a plane at infinity that you can see that [0 0

0 1]. So, that is the form.

So, in a in P, the last row is [0 0 O 1], in the last row of the affine matrix. So, this

denotes the principal plane and that is the plane at infinity that is a interpretation in the

projective space and M, , should be of rank 2, to ensure that P, to be of rank 3. So,

these are certain interpretations.
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So, let us considered estimation of an affine camera when you have more number of
points; you require minimum 4 points, but if you have more number of point
correspondences. So, you can minimum 4 point correspondences and if you have more
number of point correspondences then your estimation would be robust. So, this equation

so, this is one example has been shown specifications that capital X, and x, they are the
point correspondences X, is the scene point and corresponding image point is x; shown

in bold font. So, in the non-bold font its coordinates are expressed; so, these equations if

you form this equation.

So, once again I will be considering the concatenation of row vectors as the parameters
of my projection matrix. So, this could be represented by these two equations. So, you

can see that in this case X7 is giving youyx,, x, coordinate and X7, is giving in the y,
coordinate. So, x, should be represented in the form of a transpose here which is not
shown here, mathematically it should be X transpose and there should be also X/

transpose because you know they are row vector and then you can form this equations.

T OT
XT}) as matrix A and this

i

So, for n points, this matrix I can consider this matrix ({

could be considered a matrix say A. And if there are n points so, each one will give me

two equations. So, there will be 2n equations. And the dimensions as you can see this is



this is1x4 and this is 1x4, so it will make it 8. So, it is 2z x8 and this dimension is also
this is 8x1. So, you get 2nx1. And this matrix this column vector is found by the
coordinates respective coordinates. So, this is the set of equations which you need to
solve and this is a non-homogenous set of equations because you do not expect that
every coordinate would be 0. So, this vector is not going to be a 0 in your

experimentations or observations.

,
[ } .

r

So, you can solve it by using standard least square error method for non-homogeneous

set of equation. And the solution is given in this form I discussed the nature of solution,

solcanusea [A"A]"'A"b that would give me in the solution.
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So, we will discuss this particular thing that how the points which are lying on a plane
form images using projective camera. Without loss of generality let us consider that
plane is the say XY plane where Z is equal to 0. You can always make coordinate
transformation to make any plane as XY plane and apply this principal that is why I said

it is without loss of generality.

And say a point is given as q that is a scene point Q and this is a camera configuration,

where C is the center of projection and there is a image plane. So, a ray formed between



C and Q and the intersection of that ray with the image plane which is shown by the

point | q that is image point. So, this is how the imaging takes place.

So, now, I can express the coordinate q in this way.

gq=PO=[p, p, Py p,]

You can see here that any point in that XY plane can be written as it is coordinate as

X

ol So, finally, this relationship in this projection geometry projection matrix and

1
multiplication projection matrix with the three-dimensional point in the projection in the
homogenous coordinate system can be reduced to a form where you require only two
coordinates X Y which is a point in that plane. So, point in the coordinate convention of

the plane and multiplied by 3x3 matrix.

We know this form that this is nothing, but a 3x3 matrix transformation of a
homogenous point in a two-dimension, projectives two-dimensional projective space to
another two-dimensional projective space which is like in homographic. So, if you take
the imaging of a plane it establishes homography between the image points and the scene
points, that is the crux of this discussion. So, that is what? Perspective projection of

same plane is a projective transformation.
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We will discuss on imaging of a three-dimensional straight line and try to see how the
corresponding projected line on the image plane is related to the three-dimensional
configuration. So, consider a line L that is a three-dimensional line as shown in the
diagram and you have an image plane and its camera center at C. So, if you would like to
project this line, I can consider any two end point and of this line any two points in on

the line and find out its image points and connect those image points.

You will get another line that is a line of that image that would be a straight line also
because this property of projective transformation that is applied in this case. Now, let
this line is denoted by / in my figure and as you understand this line is represented in a
two-dimensional projective space. So, what kind of three-dimensional information that

we can recover if [ know the projection matrix, that [ would like to discuss here.

So, considered this that there is a point on a three-dimensional straight line and which is
given in this form that this is X this straight line and it is corresponding image point is
shown here by drawing the projected ray that is x . So, the relationship between x and /,
that can be found from the point containment relation. And you can also see that it forms
a plane, a three-dimensional plane which connects the camera center and also three-

dimensional straight line.

Note that the image of that straight line that also lies on that plane. So, now, as I was

mentioning that a point containment relation of the image point x can be expressed here



that is x"/=0 . And if I reduce x if I express x in terms of imaging of a three-
dimensional points, so that is you have to multiply the three-dimensional point in its
homogeneous representation with a camera matrix P. So, you get PX equals that image

point x.

So, (PX)"I=0 and using the matrix property 1 can convert this expression as

X"P"I=0. So, note that this relationship is again a relationship of point containment in

a plane where the plane is given by this P’/ So, we can get the expression of the plane
by this computation give in the projection matrix we can and also given a straight line we

can find out the plane on which the straight line camera center and their image line.

(Refer Slide Time: 26:03)
iExerciseﬁ

» Consider the following camera matrix.

7490
P=[2 3 6 0\
1580

Consider four image points x,~(2,5), x,=(7,9), x;~(-1,3)
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Compute the dihedral angle between planes of Oxx,

and Oxx,. A dihedral angle of two planes is the angle

between their normals.
B Omese s =1

The third exercise here you have this projection matrix and considered 4 image points

x,X,,x; and x, given in this form and you denote the camera center as the origin as a

point O, it is not origin it is a point O and you have to compute the dihedral angle

between planes of Ox,x, and Ox,x,. And how a dihedral angle is defined? It is a angle

of two planes, it is a angle between their normal. So, angle between the normals of those

two planes.

So, this problem you need to solve. Just to show you diagrammatically what I have asked

you that consider an image plane and you have points say x,,x, and say x,,x,. So, and

say this is the camera center; this is a camera center O. So, you can form a plane. So, 3



points can define a plane. Similarly, you can form another plane, now what is the angle

between these two plane; that is the problem what you need to solve.
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So, this is how the solution we will get that once again this is summary that those are the
points shown and also the projection matrix shown here. So, first you have to form the

first dihedral plane. So, you can see that by performing the cross product of x, and x,
you are getting the line found by x, and x,, and we know that given a line in the image

plane how the three-dimensional plane can be obtained. It is P transpose in to the line in

its corresponding image coordinate system itself, in the image representation itself.

(P"(x,xx,))

35

86
So, if I perform this operation then I would get the first plane as given here Ik So,

0
this is a first plane. Similarly, for the second plane which is found by the images image
point x;,x, and the center of camera O that is also given similarly in this form. So, now,
these are the two planes. If you take its corresponding normal vectors unit normal vectors

you can compute in this form for the first plane, for the second plane. Now, to compute

the angle between this two you can take the dot product of this unit vector and applied



that cosine law. So, cos inverse of this will give you that angle; so, this is the answer. It

is coming around 53.752 degree in this case.

(Refer Slide Time: 29:09)

J Fixed camera center and moving image

plane

xz = sz = Ksz(KlRl]_IP X
= K;R f‘KlRl)ml}?d

= Hr.

. /!
B Resers =

Next will discuss about the relationship between the image points when your camera
center is fixed and its image plane is changing. So, you consider this two scenarios that
there are two image shorts, one of them is taken in this configuration when this is the

image plane and this x, is the image of the scene point X. As you can see camera center

is still remaining at this position.

So, the camera projection matrix is given by B in this case and which is represented in

~

the general form in this form( B, = K|R,[/|—C]) using this camera center, where K, is a
calibration matrix and R, is a rotation matrix and the other for the other imaging system.
So, this is the image plane and its corresponding projection matrix is P, which is given
in this form( P, = K,R,[/ | —C ]). We can relate P, and P, in this way, we can see that this
P, if I apply (K,R)'P, this is giving you this [/ |—(~7] . So, this is giving you this
particular expression. So, finally, if I multiplied with K,R, then it becomes P, that is

how this relationship is established.

So, if I apply this relationship then we can find out that this two image point they form a

homography that we discussed already in our two-dimensional, discussion on two-



dimensional projective geometry and projective transformation in particular. So, I can

express this homography in this form. I will follow this. So, I will start from x, which is

given by the image of X in the camera P,. So, P, X .
x, = PX =K,R,(K\R)"'BX = K,R,(K\R))"'x, = Hx,

Now, P, can be related with B in this form and then as you can see this AX can be
reduced to the scene point of the other camera x, for the same corresponding scene point.
And then the relationship between x, and x, can be given as Hx, , where H is equal to
this ( K,R,(K,R,)™" ) matrix and it should be invertible. So, this is also expressing the

projective transformation between the corresponding image points. So, from the camera

geometry itself we can explain this relation.
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And when we considered the image planes their parallel then the phenomena can be
expressed like a zooming of images. So, image planes they are parallel, as if you are
changing the focal length; that means, the direct that is a distance from the camera center
to the image plane. So, you are changing the focal length. And let us consider the ratios
of this focal length is k, and we know that under this situation the homography is

established because there is no rotation in between these two cameras.



So, if the rotation is identity matrix then in a simpler form this relationship can be
expressed as K,K;'x. K,K;' will give you the corresponding homography matrix. So,

this is the £, that is the distance from center and this is f; and K is a ratio.

Now, this can be explained in a further. we can elaborate this relationship like if I
considered the deviation from any point from a particular, no. So, x naught is a principal
point. So, if I consider deviation this vector from the principle point now this deviations
or this distances or this vectors it should be also scaled in the same amount. So, it is a

vector direction remains same, but it is scaled by this factor k.
X, =X, +k(¥ —%,) =(1-k)X, + kx

So, any point can be expressed in this form given in this equation. So, X, and it is called

in its normal two-dimensional coordinate system, k in to this vector that would give you
corresponding from here, from this position the from the geometry itself you can use this
relation and this is a expression. Now, this expression can show the structure of this

homography matrix. How it is so?
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So, let me show you in the next slide. So, this is the structure as we have mentioned that

if you note that your homography structure is K,K," and finally, using that relationship



using that deviations I can relate H with this elements [ . So, this is equal

Ko (1 —k)fo}
1

to K,K;'. And from using this relationship I can relate the calibration matrices between
the two configurations K, and K, . So, what we will observed that actually the
calibration matrix is nothing, but K, calibration matrix is nothing but related with K, by

simply multiplying by a diagonal matrix k k 1 (diag(k,k,1)).

I already explain how this diagonal notation should be interpreted. You should have a

kK 0 0
diagonal elements as k k 1, these are the Os (|0 %4 0|). So, if  multiply K, with this
0 0 1

matrix then I will get K, . So, this is the relationships when you have zooming.

(Refer Slide Time: 35:35)
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:[kA kg + (1 =k) E;;] calibration

!21 o P matrix K on
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[0 1] the right by

diag(hkk,1).
=K, ‘g [1’]= K, . diag(kk 1)

So, the effect of zooming is that you had simply multiplying the calibration matrix on the
right by diagonal. With this let me stop here for this lecture. We will continue in the next

part. We will still continue this topic where in our next lecture.

Thank you very much for listening.



