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We will continue our discussion on Camera Geometry. In the previous lecture, we

discussed the form of a general projective camera. So, there is a projection matrix which

maps a 3 dimensional coordinate point to a 2 dimensional image point and in the

projective space, we can represent them as in this form.
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projection matrix.

So, we can say that there is a 3 dimensional point X and if I multiply with the projection

matrix then we will get a 2 dimensional image point PXx  and in the homogenous

coordinate system x is a 3 vector and X is a 4 vector and we can see that a projection

matrix has different components here it has the calibration matrix and then there are

different forms of representation of this projection matrix.
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It can be shown as a combination of different types of matrices like in the above

representation. it is K into R whis is the rotation matrix R which is involved coordinate

transformation from all coordinate to the camera centric coordinate by rotating the

coordinate access, it gets aligned with the camera centric coordinate system. And then

the translation of the origin that is also represented by this parameter and in fact, this is

the centre of the camera centre this is also shown here. So, these are the different kinds

of information which is embedded in this particular matrix representation.

You should note the feature of a camera calibration matrix, it is an upper triangular

matrix and if I take the determinant of this camera calibration matrix this should be the

product of those two resolution factors yx  , they are expressed in terms of number of

pixels for representing the focal lengths. they are involved with the resolutions along x

directions and y directions.

So, yx  , are involved xx fm where f is a focal length and xm is the number of

pixels along horizontal direction and yy fm where, my is a number of pixels along

vertical directions and f is focal length. So, this is what we discussed in the previous

lecture also you should note there are different ways of notations by which we will refer

this projection matrix say a projection matrix is a 43 matrix.

So, M out of them, the first 33 sub matrix that left side of sub matrix with 33 sub

matrix is denoted by a symbol say M and the fourth column vector; that means, this is a

13 column vector that is also denoted by 4p .
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So, this representation is M and this separation just show that this is a sub matrix and this

is 4p . Another representation if I take M outside then I can consider this is an identity

matrix which is a kind of canonical form of representation of projection matrix if you

remember that is the identity part of the sub matrix and this is nothing, but the negation

of the centre; that means, the this 4
1pM  gives you the camera centre negation of the

camera centre.



So, we can also represent this element as C~ and M itself can be decomposed into 2

33 matrix, it has a component calibration matrix, the other component is a rotation

matrix. So, these are different ways this projection matrices can be represented and it

could be understood all in those forms.
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So, this is what I mentioned M is the product of K and R and 4p is the last column of the

projection matrix P.
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Another thing we should note about the inverse of this calibration matrix, this is also

interesting to note that this calibration matrix is also an upper triangular matrix and since

the relationship between the image coordinate point and the corresponding camera

centric coordinate system is in this form. So, if I apply the xK 1 ; that means, if I

multiply the image coordinate with this inverse of calibration matrix, it will provide you

the corresponding coordinate in the canonical form which means the image coordinates

in the canonical form where the focal plane is at the unit distance and its axis are parallel

to the axis of the camera centric coordinate system. So, this is our interpretation.

(Refer Slide Time: 05:51)

So, we will summarize here. we will look at some of the properties of the projective

camera matrix. So, first thing as I mentioned the interpretation of the projection matrix is

that if I multiply it with the 3 dimensional coordinate point, you will get the 2

dimensional image point and the rank of this projection matrix is 3, it is a 43 matrix, its

size is 43 and if the number of independent parameters in the projection matrix is 11.

So, degree of freedom is 11.

So, out of which number of extrinsic parameters that is 6 that we have discussed, 3

rotation parameters those are involved in forming rotation matrix; that means, 3

rotations of axis and 3 parameters for translation of origin and number of intrinsic

parameters that is 5 as we have already seen the in the calibration matrix it is an upper

triangular matrix and there are 5 independent parameters. And when we express this



relationship when we expand this relationships in terms of coordinates individual

coordinates, we will get actually two independent equations.

So, we will see how those equations can be written in the next slides. So, since there are

two independent equations; that means, if I give you certain point correspondences

suppose, the problem here is that I give you the scene points say 1X and also its

corresponding you know image point small 1x . So, if it is given to you then I can apply

this equations, I will get two equations, but how many unknowns are there as I

mentioned in the projection matrix there are 11 unknowns. So, I should get at least 11

equations to solve for all the unknowns, but since 1 point correspondence gives me 2

equations.

So, I require at least 6 such point correspondences, I require at least 6 such point

correspondences to form you know equations and from there I can estimate the

projection matrix. So, this is one technique by which we can find out the projection

matrix because we can always through experimentation, we can level some of the

coordinate points in the world coordinate system and we can identify their image points

in your in the images and that establishes those points correspondences then by knowing

their coordinates, we can form this equations and then we can derive this elements of this

projection matrix.
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So, this is how these equations are written as I mentioned in the previous slide. So, you

note here that a point in the image coordinate is given in a very general form as

 Tiii wyx because it is denoting a column vector. You note here that we have used

the scale factor iw here. So, which means that this yx, is not exactly the observed image

coordinate because there the scale factor has to be 1, but theoretically I can express an

image coordinate in the using this scale factor in the projective space.

So, if I multiply an image coordinate point with this projection matrix, I will get a point

in the 2 dimensional projective space and that is how in this form. So, the problem here

is that if I apply simple equation then because of the scale factor that equation will be

difficult to write t. So, we cannot simply equate the scales of iPX and ix . So, those are

equated in terms of the after the scale adjustment those coordinates are their equivalence

is established. Hence, ii xPX 

So, instead of that we can consider them as vectors and these vectors so, their directions

are to be same because the proportionate scaling does not change the direction of a

vector. So, if I consider since they are equivalent in that case the interpretation is that

those vectors they are parallel vectors they should have same directions. So, if I take the

cross product of these two vectors and then form the equation because we know that the

cross product of 2 parallel vector is a 0 vector.

So, we will perform this cross product and if we perform this cross product then we can

derive these equations. So, let me find out that how this representation is possible. So,

let us consider a representation of the projection matrix in this form which means I will

be considering, now I will be considering the row vectors instead of column vector

representations and because there are 3 rows.
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So, we have seen first row is represented by 1r , second row is represented by 2r and third

row is represented by 3r , I have used the transpose operations just to denote that in my



actual presentations these are all column vectors, but since they are rows so, I have to

apply transpose to those column vectors.
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So, now, if I perform iPX so, the operation iPX will give me the corresponding

operation will give i
T Xr1 then i

T Xr2 and then i
T Xr3 . So, this is the column vector that

we will get from this operation. So, you note that each one i
T Xr1 what is the dimension

of 1r , our dimension of 1r is 14 because it is a row vector. So, each row is a 4

dimensional vector and what is the dimension of iX , dimension of iX is also 14 .

So, i
T Xr1 will give you a scalar value, i

T Xr2 will give you a scalar value and i
T Xr3 give

you a scalar value.

So, finally, you will get a in this form you will get a 13 column vector right. And iX is

represented in this way  Tiii wyx and if I take the cross product of this two as we

did earlier in our first few lectures to get the cross product, we can write it as i
T Xr1 , this

is i
T Xr2 and this is i

T Xr3 and then x i this is small x i y, i and w i. So, if I expand in this

form. So, you will get the following vector
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r 2 transpose X I, w I into r 2 transpose X i minus y I into r 3 transpose X i this is i plus

let me write from this form.



So, X i into r 3 transpose X i minus w i into r 1 transpose X i that is j plus so, from

surpassing this part. So, will be getting y i r 1 transpose X i minus x i r 2 transpose

capital X i k. So, you will get this vector if I write this vector, we will get these vectors

as w 1 r 2 transpose X i minus y i r 3 transpose. So, I have to use the other notation, this

is not giving you the space, you can start again. So, w 1 r 2 transpose X i and then y i r 3

transpose X i so, this is the first component and other components and then that is equal

to 0 0 0. So,
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you will see that this is equated with this equation and here unknown is 2r and 3r .

So, these are the unknown quantity because those are going to be estimated. Now, these

equation is written in this form if you note the first row, you see it involves r 2 and r 3.

So, it involves r 2 and r 3 since it does not involve r 1. So, this is multiplied by a 0 vector.

So, you will see that 0 transpose here it is a 1 cross 3 0 vector. So, this is multiplied with

r 1 which is 0 minus w i r 2 into X i transpose. So, now, since in my representation, I am

representing the rows as a column vector, I will express all of them as a transpose

operations.
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So, it is w 1 X i transpose. So, I will take it as a transpose operations so, it will be w 1 X

i transpose r 2 minus y i X i transpose r 3 so, those equation. So, in this way the first

equation is formed. Similarly, the second equation and third equation can be formed I

have just shown only 1 equation just for the sake of your understanding. So, you can do

it on your own and you can check how is equations are formed. So, now, you will see

that there are actually three equations what you get, but out of them, there are two

equations which are independent one is redundant, how it is so. So, let me show you.
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So, if I multiply the first equation with x i and then add it with and also multiply the

second equation with y i. So, you multiply the first equation this equation with x i that is

what is told here and these equation with y i and then if you add them you will get the

third equation again which is multiplied by w i, you can check that thing. So, which

means these equation can be derived from these two equations. So, which means that

there are only two independent equations other equation can be derived. So, that is why

in the previous case I mentioned that there are two independent equations that be that

would be formed by using a one single point correspondences specification.

So, in this way you require six such point correspondences and you can form twelve

equations independent equations and use it to derive the estimate this parameters of the

projection matrix. So, let me continue this you know operation further.
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So, this is the summary finally, as you can see I have eliminated the third row just to

show that there are only two equations which are formed by using a single point

correspondence. So, if I have n such points, n point correspondences each one will give

me two equations. So, I will get 2n such rows for n point correspondences and what is

the dimension, if I note the dimension see each one is it is a 31

So, each one is a 31 sub matrix, each one is 41 sub matrix because number of

elements here since it is a projection matrix, number of elements is 112 ok. So, you

will get in this case, the total dimension here number of column is equal to 12 and this

was 2 rows, for n point correspondences. So, you expect it should be 122 n that should

be the dimension of the matrix. So, you will get the equations in this form.

So, we will represent the corresponding matrix as A this matrix if I stack all this rows

then we call this matrix as A which is of dimension 122 n and each one each row is

multiplied by this you know this elements of the projection matrix which are represented

by their row vectors r 1, r 2, r 3 which is also of dimension 12 n and each one each

point correspondence will give you two equations.

So, finally, there would be this should be 12 n . So, this is a 0 column vector. So, this is

a interpretation of this matrix representation of the linear equations in the matrix form.

So, there are actually 2n number of linear equations when you get n point

correspondences.
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So, the as you understand that you have more number of equations than the number of

unknowns so, you have to apply a least square error technique what we did earlier for

estimation of homography also and in this case, it is a set of homogeneous equations

these linear equations they form a set of homogenous linear equations.

So, the standard technique is that we need to minimize this objective function given that

it is a norm of Ap, A is this corresponding matrix, A is the same matrix which is derived

from the point correspondences and p is your solution; that means, the elements of the

projection matrix which is represented in the form of this; that means, all row vectors are

concatenated one by one from the starting from its first row to third row and that gives a

12 dimensional vector. So, we have to minimize this norm and since you know this

solution is in the projective space and if I take a scaled vector also it is also the solution.

So, we would put a constraint on this minimization that norm of this vector should be

equal to 1. So, this is once again the corresponding problem formulation for solving this

particular problem for estimation of projective matrix and we have seen the same

formulation for the estimation of homography matrix.

The same techniques we can use that is a direct linear transformation techniques by using

either least square error estimation by considering one of the scale one of the; one of the

element of the projection matrix of the vector is by setting it to some value and then we

can solve it in the form of a non-homogenous equations by using least error technique or



you can consider by finding out the eigenvectors of a transpose A and taking the vector

corresponding to the minimum eigen value. So, we have already discussed in the

previous class.

(Refer Slide Time: 23:14)

So, let me now consider that, once you have this projection projective camera matrix

then what are the; what are the properties and what are the information that you can get

by exploiting this properties so, we will be discussing those things. So, as we have

discussed that projection matrix can be represented in different ways.

So, one of the representation is that it could be two sub matrices; one is of 33 M, the

other one is a column vector 3 cross 1 and the notation we use for 33 sub matrix is M,

the other one is 4p or we can represent it as a set of four column vectors; that means,

first column vectors, second, third, fourth that is the each one is a sub matrix of 13 or

we can considered as a stack of rows where each row is of 14 sub matrix.

So, this is how we can represent a projection matrix with this notations and using this

notations, we can relate these parameters to different types of imaging points so,

different types of geometric points. So, first thing is the camera center, we have already

established this relation . we know from the projection geometry that camera centre is a

singular point; that means, if I would like to take the image of the camera center you will

not be able to form a image, you cannot form a ray connecting to the same point itself.



So, which means that if I multiply the camera center with the projection matrix, I will get

a singularity which is a 0 vector so that is the interpretation that PC should be equal to 0

and for finite camera, M is non-singular and for camera at infinity, you will find M is

singular; that means, when camera is at infinity will again understand this interpretations.

So, where you can see that camera center is a point at infinity means its scale factor

should be equal to 0. Now, if I consider this representation PC=0, I can derive the camera

center very easily. So, using the sub matrix manipulation say I will represent the

projection matrix in this form ]|[ 4pM and the center as 

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Now, this if I perform the sub matrix you know operation multiplication operations, this

is equal to 4
~ pCM  that is equals 0 and which means that 4

1~ pMC  So, if I get the

projection matrix elements, I can easily estimate the camera center by exploiting this

relation where as for computing the center when M is singular then we have to use only

M to find the 0 of that 0 vector of that M and to in the singular form and you can

compute its center 
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C , we will again discusses this elaborate this computation later.

There are also interesting relationships with its column vectors so, you have the column

vector say 321 ,, ppp and they are vanishing points of X, Y and Z axes whereas, 4p is the

image of the coordinate origin. So, what is the vanishing point, suppose I consider

particular direction or a particular ray.

So, the point which is at infinity that would be projected that would be also projected in

the image plane. Now, it can be shown that for all the points lying in this straight line,

they will be converging to that point and that is called vanishing point for that direction.

So, what you need to do, simply this representation this point representation would be

the direction is given by the vector d.



So, we can represent this point as 
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, you note that d is a vector, d is a vector it is a

13 element d is a vector. So, d is a 13 element and this 0 ok. So, if I multiply with

respect to this projection if I multiply this vector with projection matrix, we will get the

corresponding vanishing point of that direction. So, if I have the X-axis the direction of

X-axis is given as
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and if I multiply p with this vector, what you will get, you will get

only 1p .
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So, 1p is the vanishing point of the X -axis similarly 2p is the vanishing point of Y-axis

and 3p is the vanishing point of Z-axis. So, this can be summarized very easily.
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So, this is what I just described. So, 1p if I multiply this with this, you will get 1p and

similarly 2p 3p and the other thing is that you note if I consider this point
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and if I

multiplied with the projection matrix, I will get 4p which is the column vector.
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So, what is the interpretation here, what is this point? Note here this point this part is the

origin of the world coordinate system because this is a 0 0 0coordinate system and this is

the scale factor standard representation of the of any point in the homogenous coordinate

space. So,
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this point is nothing, but the origin of the world coordinate system. So, if I

take the image of the origin of the word coordinate system, I will get the column vector

4p which means 4p is the image of that coordinate origin. So, with this let me stop here

for this lecture and then I will continue once again this topic in the next lecture.

Thank you very much.


