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Hello welcome to the NPTEL online certification course on Deep Learning. 
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You remember in the previous class we have talked about the discriminant functions and

we  have  also  seen  the  decision  boundaries.  So,  we  when  we  discussed  about  the

discriminant  function  and  then  the  decision  boundary  we  have  assumed  the  vectors

representing  the  objects  that  follow  certain  probably  density  function  of  certain

distribution.  And  the  distribution  that  we  have  assumed  in  this  case  was  a  normal

distribution. 

So,  it  was  a  multivariate  normal  distribution  and  based  on  that  based  using  this

multivariate normal distribution, under different assumptions of the covariance matrix

we have seen that we can have the discriminant functions which are linear we can have

discriminant functions which are quadratic.

And accordingly when we try to compute the decision boundary between the vectors or

the  patterns  belonging  to  two  different  classes,  the  boundary  can  be  either  a  linear



boundary or the boundary can be a quadratic boundary that depends upon what type of

covariance  matrix  the distribution  exhibits.  Now, today we will  talk  about  the linear

classifier. And we will also talk about the support vector machine, before talking about

the linear classifier and the support vector machine we will briefly touch upon another

two different types of classifiers which are nearest  neighbour classifier  and k nearest

neighbour  or  k-NN  classifier.  So,  let  us  first  talk  about  what  is  nearest  neighbour

classifier or nearest neighbour rule.
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So, before going to that you find that in previous two lectures when we talked about the

discriminant function which leads to the decision boundary between the two different

classes, in a particular case that when the covariance matrix of all the different classes

are of the form sigma square I. That means, in this case the different components of the

vectors where statically independent and all the components have same variance which is

equal to sigma square. So, there the covariance matrix for all the classes are same and

which is in the form sigma square I, where this I is an unity matrix. 

Under this and when the a priori probability of the classes P omega i was equal to P of

omega j there we found that the decision boundary between the classes omega i and

omega j was a linear boundary. And, not only that it was a perpendicular or orthogonal

bisector of the vector of the line joining the main points mu i and mu j. So, if this is mu i

and this is mu j  then the line joining mu i and mu j  is bisected orthogonally by the



decision boundary between these two classes. So, this was one of the case in which I can

separate 2 classes by a linear boundary. And of course, in this case if P omega i is greater

than P omega j then this decision boundary is shifted towards mu j. 

In the sense that for unknown feature vectors our decision will be bias towards omega i

because, P of omega i that a priori probability P of omega i is greater than P of omega j.

In the other case if P of omega i  is less than P of omega j  in that case the decision

boundary shifts towards omega i. It remains orthogonal to the line joining omega i and

omega j, but it shifts towards omega i indicating that what decision for unknown features

vectors will be biased in favor of class omega j. 

So, particularly in this case when P omega i is equal to P omega j then my decision

boundary is orthogonal bisector of the line joining mu i and mu j which clearly indicates

that if I have an unknown feature vector say X over here which I need to classify.
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This is the mean of the vectors belonging to class omega i and this is mu j which is mean

of the vectors belonging to class omega j. And, here we are assuming that the a priori

probabilities P omega i and P omega j they are equal; that means, the classes are equally

probable. So, under this situation when I have this unknown feature vector X over here

which have to be classified, what I am effectively doing is because this X falls on this

side of the boundary. So, it is to be classified to class omega i or in other words what I



am doing is I am trying to compute the distance between mu i and X and I am also

computing the distance between mu j and X. 

And here the distance between mu i and X which if I represent as d of X mu i and in

other case the distance between X and mu j is d of X mu j; you find that d of X mu i is

less than d of X mu j. And that is true for any point X lying on this side of the boundary

and  all  this  cases  this  vector  will  be  classified  to  omega  i.  So,  in  other  words  the

classification rule that I am applying is a minimum distance classification rule where, the

distance that you are computing is the Euclidian distance between the unknown vector X

and the means of the classes.
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 Let us see the other case where we have assumed that mu i is of the form mu; that

means, the covariance matrix of all the classes are same. But, the components of the

feature vector may not be statically independent; that means, the off diagonal elements of

the  covariance  matrix  may  be  non-zero.  So,  under  that  situation  again  under  the

assumption of equal a priori probability that is P of omega i is equal to omega j. We

found that  decision  boundary  is  bisector  of  the  line  joining  mu i  and mu j,  but  the

decision boundary is no longer orthogonal to the line joining mu and mu j. 

So it is a bisector, but it may not be orthogonal. So, what do we do in this case? Again

here if I have a unknown point X on this side, this unknown point X will be classified to

class  omega  i,  because  it  is  falling  on  the  side  of  mu  i.  Is  it  a  minimum  distance



classifier? Yes, again in this case it is a minimum distance classifier because, what we are

computing  is  X minus mu i  transpose sigma inverse X minus mu i.  And I  am also

computing X minus mu j transpose sigma inverse X minus mu j. So, if X minus mu i

transpose X sigma inverse X minus mu i this is less than X minus mu j transpose sigma

inverse X minus mu j then the point X will be classified to class omega i. 

And you find that this is also a distance measure, but it is not Euclidian distance any

more, but this distance is what is known as Mohalanobis distance ok. And you find that

when this covariance matrix sigma is of the form sigma square I and assuming that sigma

square is equal to 1 this Mohalanobis distance will be same as Euclidian distance. So, if

an in this case where the covariance matrix sigma i of all the classes is same, but the

feature components  may not be statically  independent  I still  get a minimum distance

classifier. But the distance that you compute in this case is not Euclidian distance, but the

distance that you have to compute is Mohalanobis distance ok. 
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So, with this background now let me talk about what is meant by nearest neighbour rule

or  nearest  neighbour  classification.  So,  as  we said before  that  every object  or  every

signal is represented by a vector of which are vectors whichever with the vectors are

computed.  It  may be computed using some signal processing techniques  or given an

image I can simply represent this image as a vector by simply concatenating the columns

of the image. So, if I have an image of size say m by n, I will represent this by a vector



having m into n number of components. So, that becomes at an m into n dimensional

vector. 

So, once I represent these as vectors; that means, the signal an image or whatever is

represented by a point in that vector space or feature space.  So, as it  is an m into n

dimensional vector so, I am defining an m into n dimensional feature space and every

image will be represented by a point in that m into n dimensional feature space. But, here

I am taking simplistic view because, I cannot represent an m into n dimensional space on

a 2 dimensional plane. So, what I am doing is I am projecting them into 2 dimensional

space. So, each of these images that you find in this particular plane they are nothing, but

different vectors. So, this image is a vector, this image is a vector; I am simply projecting

them into 2 dimensional space X 1 X 2 assuming that X 1 X 2 are the feature vectors.. 

Now, given this let us see what is a nearest neighbour rule. So, here all this images are

the  known images  I  know what  is  the  class  from which  this  image  comes.  Say for

example, I know I have lot of images which are birds, I have a lot of images which are

cars, I have lot of images which are dogs ok. Now, given an unknown image this I have

to classify or I have to identify what this image is. You know that all those previous

images that we had those are the training images using which I have to classify this

unknown image. So, one of the approach in which this image can be classified is what I

do is I simply take the distance of this unknown image or the vector representing this

unknown image from all other images which are known. 

And once I compute this vector so, if have say P number of previously known images

and I have this unknown image which I want to identify. So, I have to compute P number

of distances, distance from every other image which we have in my knowledge space

right. And once I do that after  that I find out that what which is the image which is

nearest to it. So, if you go back to the previous one you find that probably this is the one

which is nearest to this unknown image. So, my classification rule is that whichever

image is nearest to it, I identify this unknown image to be the image corresponding to

that class. So, over here as this was the nearest image so, I identify this unknown image

to be one of these images. 

And obviously, in this case you find that your classification is not correct because the

unknown image that I had was the image of a car whereas, my nearest neighbour rule has



said that it is the image of a dog which is obviously, incorrect. So, what is the problem in

this case? The problem is I am trying to find out which is the nearest known image in my

knowledge space, that is nearest to this unknown image. So, I am taking my decision

based on that nearest image so, my decision is based on only one vector. 

And, if that vector is an out layer then obviously, my decision is going to be wrong and

that is what has happened in this case. So, an alternative is that instead of considering

only one image, if I consider multiple number of images. So, what I will do is I will take

multiple number of images. So, if I take k number of nearest images then it becomes a k

nearest neighbour rule. 
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So, in K nearest neighbour rule what we do is I have as before all these different vectors

or  images  in  my  feature  space.  Again,  I  have  this  unknown  image,  I  compute  the

distances from all the know images. And, out of that I consider only few or K number of

images which are nearest. And, then among this K number of images, I compute a vote

that is whichever class of images is in majority in that K number of images, I consider

this unknown image to be classified to that corresponding class. So, in this particular

case you find that the out of all these images which are nearest. 

So,  all  these images  which where nearest  to this  unknown image I have two images

which belong to bird, I have two images which belong to dog, but I have 1 2 3 and 4,

four images of cars. So, this car images are in majority so, I classify this unknown image



to be one of the car images and my classification in this case is correct. So, K nearest

neighbour rule in general gives better result than nearest neighbour rule because, you are

taking  decision  based  on  multiple  number  of  images  or  multiple  number  of  feature

vectors which takes care of the out layers removal of out layers. 

So, this nearest neighbour rules are very simple to apply, but what is the drawback? The

drawback is usually in machine learning applications I have lakhs and lakhs of images

given for training. So, whether I want to use nearest neighbour or K nearest neighbor, I

have to save all those images in the memory. And while taking decision for an unknown

image or for an unknown vector I have to compute all those lot of distance values. And,

based on the distance values I have to take a decision that to which class this unknown

image should be classified and that is obviously, computation extensive.

So, the simplest  approach is that instead of trying to do this, you try to find out the

decision boundaries which we have also seen earlier. So, given a number of classes the

given images belonging into two different classes, if I can compute a decision boundary

between the 2 classes. Then for an unknown image, if that image falls on one side of the

boundary it  would be classified  to say class omega i,  if  it  falls  on other side of the

boundary then it will be classified to class omega j. 

And, for that once that boundary is computed I can discard all those training measures of

the training vectors, what I need to stored is simply few number of parameters which

identifies or which describes that boundary. So, let us see how this can be done.
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So, let us assume in this case take a let us consider this case that all these feature vectors

they belong to one class and these are the feature vectors which belong to another class.

So, had we used a nearest neighbour rule and give an unknown feature vector over here

in order to classify this unknown feature vector, I had to compute the distances from all

these feature vectors which are known. And then based on these distance values I had to

classify this unknown feature vector to either this class say omega 1 or this class say

omega 2.

But,  now what I am doing is instead of computing those distances or saving all  this

feature vectors in computer memory I am trying to find out a boundary between these 2

classes. So, assuming that all these features vectors are linearly separable I can separate

these 2 classes of feature vectors by a linear boundary. So, in a 2 dimensional case it will

be a straight line, in a 3 dimensional case it will be a plane, in multi dimensional case it

will be hyperplane. So, given such a linear boundary in this 2 dimensional case you find

that the equation of this boundary will be something like a X 1 plus b X 2 plus c is equal

to 0. 

So, the parameters representing this particular straight line are the parameters a b and c,

where we know that a vector a b is orthogonal to this separating line to the line and c

represents the position of the line in that is 2 dimensional space. So, if I vary a and b in

that  case the orientation of the line will  be different and if  I  vary c in that case the



position of the line will be different. So, this is what we have in case of 2 dimensional

space, in case of a multi dimensional feature vector the equation will be a X 1 plus b X 2

plus c X 3 plus something like k that will be equal to 0. So, if I have d dimensional

feature vectors I can write this in the form W i X i or i varies from 1 to d plus W 0 that

equal to 0. 

So,  you remember  that  this  equation  is  similar  to  what  we have  derived earlier,  the

decision  boundary  between  two  different  classes  using  them  normal  multivariate

distribution which was W transpose X plus W naught that equal to 0. So, this is same as

this when this W transpose X is expanded component wise so, this is the expression that

I get. So, this is the equation of the this straight line which or the plane which separates

the feature vectors belonging 2 classes omega 1 and omega 2 or omega i and omega j.

So, given this now I can move further.
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So, what I need to do is given a set of feature vector belonging to two different classes

and  assuming  that  the  feature  vectors  are  linearly  separable,  I  have  to  find  out  a

separating plane or hyper plane which separates the feature vectors belonging to these

two different classes.
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And the equation of that separating hyper plane is simply of the form W transpose X plus

W naught is equal to 0. And you remember that such a plane divides the feature space

into two half spaces; one of the half space is positive and the other half space is negative.

So, if we say that the feature of vectors taken from class omega 1, they belong to the

positive half space and the features vectors taken from class omega 2 they fall in the

negative half space.. 

And using this once I design such a classifier of the such a separating plane then for an

unknown feature vector say Y; if W transpose Y plus W naught becomes greater than 0,

then we take a decision that W should belong to class omega 1. Because, Y is sorry this

is Y not X that because, Y is falling on the positive half space whereas, if we find the W

transpose Y plus W naught becomes negative if it is less than 0, then our decision will be

that Y should belong to class omega 2. 
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So, what we have is for all the known samples or the training samples I if the training

samples is taken from class omega 1, I should have W transpose X plus W naught greater

than 0. When X belongs to class omega 1 and W transpose X plus W naught should be

less than 0 when X belongs to class omega 2. So, whichever W when vectors W and the

bar stem W naught I choose that must satisfy these relations, these inequalities for the

samples taken from class omega 1 and the samples taken from class omega 2 right. 

Now, we find that this particular expression W transpose X plus W naught, I can put this

in an unified representation in the form that I can write this as a transpose Y. How I can

do  it?  I  have  to  append  an  additional  dimension,  I  have  to  append  an  additional

dimension into this X. So, if X is of dimension d I have append a 1 to this dimension to

this X and make it of dimensional d plus 1. So, the way it is done is suppose it is a d

dimensional vector so, this W transpose t W is also a d dimensional vector. So, I have W

1 W 2 up to W d this multiplied by X 1 X 2 up to X d. So, this is the expression which

gives me W transpose X plus W naught, this equating to 0 gives me the equation of the

separating plane. 
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Now, this equation I can rewrite in the form W 1 W 2 W d W 0 X 1 X 2 X 3 up to 1 this

equal to 0; so, I can call this as a and this as Y right. So, my equation simply becomes

equation of the plane as a transpose Y equal to 0, where a is W appended by W naught

and Y is vector X appended by an additional component which is equal to 1. So, I can

represent that equation W transpose X plus W naught equal to 0 as W transpose Y equal

to 0. 

And as before if Y belongs to class omega 1 I have to have a transpose Y greater than 0,

if Y belongs to class omega 2 I have to have a transpose Y less than 0. What I can do is

for all the Y which are taken from class omega 2 I simply negate them. So, for them

instead of considering Y, if I consider minus Y for all Y which are taken from class

omega 2. And if I do this  then if  Y is correctly  classified by a I will  have simply a

transpose Y greater than 0, where Y if it is taken from class omega 2 it is negated Y. 
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So, given this I have now uniform criteria of correct classification that a transpose Y has

to be greater than 0 for all the training samples Y whether they are taken from class

omega 1 or they are taken from class omega 2. Because, for all the Y’s which are taken

from class omega 2 they have been negated. So, my design approach can be that I can

start with any a arbitrary again, but if I find so with this a I test all the training samples. 

So, as long as for every training sample a transpose Y remains greater than 0 I know this

a correctly classifies all those training samples. But, for if for any training sample I find

that a transpose Y becomes less than 0, then I know that this Y has not been correctly

classified or it has been misclassified by this vector a. 

So, what I have to do is in this particular case this a has to be modified. So, in order to do

this what I can do is I can compute some sort of error terms, that is for every vector

which is  misclassified I  will  compute an error. So,  the error term because Y will  be

misclassified, if a transpose Y is less than 0 I can simply compute the error term as minus

a transpose Y. So, whenever a transpose Y is less than 0 minus a transpose Y, we have a

positive term. 

So, if I check all the feature vectors all the training vectors which are misclassified by

this a, I collect all of them compute minus a transpose Y for all those feature vectors

which are misclassified and take the sum of all of them right. So, I compute an error say



J which is equal to minus a transpose Y, for all Y which are misclassified and J will be

equal to 0 if all the samples are correctly classified.

So, we find that if I have the misclassified samples, this sample this sum of minus a

transpose Y is going to be positive. And if all the samples are correctly classified, all the

vectors are correctly classified then the value of J will be equal to 0. So, while designing

this  a  or  while  designing  the  boundary  between  the  linear  boundary  between  two

different classes or approach should be that we should be able to or we should try to

reduce  this  error  term J  ok.  And for  that  the  kind  of  approach that  can  be  taken  is

something like this. 
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So, I have this a I will put an initial a to be equal to 0 and then gradually in the k th step I

should be able to a get a k from a of k minus 1 that is the previous value of a such that I

move from a k plus 1 to a k minus 1 to a k in such a way that this movement will try to

reduce the error J a; if I represent the error as a function of a that when I move from j a k

minus 1 to a k the error a should be reduced. So, we will talk about this more in our next

lecture.

Thank you.


