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Hello  welcome to the NPTEL online  certification  course on Deep Learning.  We are

discussing about the Discriminant Function and the decision boundary among different

classes. So, in the previous class we have considered two simple cases or the covariance

matrices of the different classes they are same. And, in one of the case we have assumed

that the covariance matrix is of the form sigma square i, where sigma is the variance of

all  the  components  of  the  vectors.  And,  i  is  an  unit  matrix  which  indicates  that  the

covariance matrix is diagonal, all the off diagonal elements are 0 and all the diagonal

elements are same.

And, that is the case of distribution of points or the points are spherically distributed or

hyper spherically distributed. And, in the second case we have assumed that sigma or the

covariance matrix of all the classes are same, but the covariance matrix need not be of

the form sigma square i; that means, I also have off diagonal elements which are non-

zero. And, this is a case of distribution of points where the vectors are distributed in

ellipsoidal fashion or hyper ellipsoidal fashion.
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So, what we have discussed in the previous class is the decision boundary under various

cases of covariance matrices and we are going to continue with the same discussion in

this class with few more examples.

(Refer Slide Time: 02:11)

So, where we stopped in the previous lecture is we have assumed the case where the

covariance matrix sigma i is equal to sigma ; that means, the covariance matrix of all the

classes are same. But, here the covariance matrices need not be diagonal only and given

this case we have in the previous class computed that g i X or the covariance the distant

function of the ith class is given by W i transpose X plus W i naught. Where, we have

seen that this W i is of the form sigma inverse mu i and W i naught was simply given by

minus half mu i transpose sigma inverse mu i plus log of P of omega i, where P of omega

i is the a priori probability of class omega i. 

So, given this again as we have done in the other case I can compute the decision yeah.

So, here you find that because this g i X is of the form W i transpose X plus W i naught;

again this discriminant function is a linear function because I do not have any quadratic

term in X in this expression. So, the discriminate function here again is a linear function.

So, given such a discriminant functions as we have computed in the previous case, I can

compute the decision boundary between the 2 classes omega i and omega j. So, what will

be the decision boundary? 
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The decision boundary here again will be given by g X is equal to g i X minus g j X and

because, on the boundary g i X and g j X they are equal so, I will have g i X minus g j X

equal to 0. And, you find that what was our expression for g i X? g i X was of the form

sigma i mu i sigma mu i transpose sigma inverse X minus half mu i transpose sigma

inverse mu i plus log of P of omega i. Similarly, when I compute g j X, g j X will be mu j

transpose sigma inverse X minus half of mu j transpose sigma inverse mu j plus log of P

of omega j.

So, if I simply subtract this g i X minus g j X and equate that to 0 my expression will

simply become, when I compute here g X which is nothing, but g i X minus g j X equal

to 0. That simply becomes mu i transpose sigma inverse minus mu j transpose sigma

inverse X of this minus half of mu i transpose sigma inverse mu i minus mu j transpose

sigma inverse mu j plus log of P omega i upon P omega j that will be equal to 0 ok.

And, if you simplify in the same way that you have done earlier, you find that this will

lead to an equation of the form W transpose X minus X naught which is equal to 0.

Where, this W in this case will be given by sigma inverse mu i minus mu j and X naught

will be given by half of mu i plus mu j minus 1 upon mu i minus mu j transpose sigma

inverse mu i minus mu j. Here it will be log of P omega i upon P omega j into mu i minus

mu j.



So,  what  does  it  indicate?  In  indicates  as  before  that  because  the  equation  of  the

boundary, the decision boundary between the classes omega 1 and omega g is of the

form W transpose X minus X naught equal to 0. And, if you remember this form is

similar to what we have obtained in the previous case where, the covariance matrix was a

diagonal matrix for all the classes. But what is the difference? In the previous case this W

was simply mu i minus mu j; that means, W was the vector drawn from mu i to mu j, but

in this case W is sigma inverse mu i and j mu i minus mu j.

So, which means that W is no longer in the direction of the vector from mu i to mu j, but

the direction of W depends upon the covariance matrix sigma, because the expression is

sigma inverse mu i minus mu j. X naught as before if I assume P omega i and P omega j

to be equal that is the classes to be equally a priori, in that case sigma naught as before

becomes  half  of  mu  i  plus  mu j  ok.  So,  this  expression  simply  becomes  again  my

decision surface,  the decision boundary between the classes omega i  and omega j  is

orthogonal to W, but unlike in the previous case it is not orthogonal to the line joining

mu i and mu j right.

So, it is orthogonal to W, but under the situation that P omega i and P omega j to be

equal, the line becomes a bisector of the line. The decision surface becomes a bisector of

the line joining mu i and mu j, because when P omega i and P omega j they are equal X

naught is half  of mu i  plus mu j.  So, it  is  halfway between mu i  and mu j.  So, my

decision surface is a bisector of the line joining mu i and mu j, but it may not be an

orthogonal bisector because, W is no longer in the direction of the line joining mu i and

mu j in general. So, let us see that what will be the nature of the decision surface in this

particular case.
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So, again for that I take a number of examples, number of feature vectors from class

omega 1 and from class omega 2. So, in this case the feature vectors that I am taking

from class omega 1 are all these feature vectors which are marked in blue. So, these are

the feature vectors that I am taking from class omega 1 which are 6 2 9 3 7 5 and 10 6.

Similarly, all these feature vectors which are in red they are taken from class omega 2,

the feature vectors are 6 11 9 12 7 14 and 10 15. So, here you find that unlike in the

previous case what the state of feature vectors are spherically distributed, in this case

they are elliptically distributed; they are not spherical distribution anymore

So, given these feature vectors now let us see that how we can find out the decision

surface. So, for these two sets of feature vectors I compute the mean vectors mu 1 for

class omega 1 and also I compute mu 2 for class omega 2. Again there is a mistake, the

second one here this mu 1 this actually should be mu 2, there is not mu 1, but it is mu 2.

So, mu 1 is equal to 8 4 and mu 2 is equal to 8 13, they are the mean vectors of the

feature vectors taken from class omega 1 and class omega 2.



(Refer Slide Time: 12:51)

So, once I have this then again as before I can compute the covariance matrices. So, as

we  have  computed  in  the  previous  lecture,  in  the  same  manner  if  I  compute  the

covariance matrix you will find that a covariance matrix for both the classes omega 1 and

omega 2 will be half into 5 3 3 5. So, this is the covariance matrix that you get for both

the  classes  omega 1 and omega 2.  And so,  this  is  a  case  where  at  my off diagonal

elements they are not a 0 anymore.  So, unlike in the previous case where,  I had the

covariance matrix which was completely a diagonal matrix and all the diagonal elements

were equal; in this case I have off diagonal elements which are non-zero.

So that  means,  the  feature  components  the  different  components  are  not  statistically

independent anymore. However, for both the classes I have the same covariance matrix

that is half 5 3 3 5. So, this comes under the case sigma i is equal to sigma. So, once I

have this covariance matrix, I can compute sigma inverse that is the covariance matrix

inverse ok.
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And, using this as we have seen earlier that I can compute the decision surface and the

decision surface is given by W transpose X minus X naught equal to 0 where, W is sigma

inverse mu 2 minus mu 1. And, you remember the sigma inverse that we have computed

was 1 by 8 5 minus 3 minus 3 5 and mu 2 minus mu 1 is nothing, but 0 1 so, I get W

which is minus 3 5. So, that simply says that the W is in the direction of minus 3 5, W

will be in this particular direction. So, here you find that this dark green line, this line

represents in the direction of W ok.

And, given this I can also compute what is X naught as X naught is given by minus X

naught is given by half mu 1 plus mu 2 minus this. And, under the situation if I assume

that P omega 1 and P omega 2 to be equal log of P omega 1 upon P omega 2 that will be

equal to 0; that means, this term will be cancelled giving X naught to be half of mu 1

plus mu 2. So, that simply says that our decision boundary which will be orthogonal to

sigma inverse mu 2 minus mu 1 or mu 1 minus mu 2 and it  will  pass through the

midpoint between mu 1 and mu 2. So, this dark blue line is the line joining mu 1 and mu

2, dark a green line is sigma inverse mu 1 and [vocalized- noise] mu 1 minus mu 2.

And, this dotted red line is the line which is orthogonal to this dark green line and it

passes through X naught where, X naught is half of mu 1 plus mu 2. So, this is mu 1 and

this is mu 2 ok. So, here you find that the decision boundary in this case is also linear,

but the decision boundary is no longer orthogonal to the line joining mu 1 and mu 2. So,



this was our second case where sigma i was equal to sigma. Now, let us consider that

what will be the discriminant function and the decision boundary in the most general

case.
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Where, I have sigma i to be the most general one, that is for different classes I can have

different  sigma  y.  It  is  possible  that  for  some  of  the  classes  the  sigma  i  will  be

orthogonal, but some of the some other classes sigma i can be diagonal for, but for some

other classes it may not be diagonal. So, every class or the sample vectors taken from

every class they have their own covariance matrix sigma i. So, to see that what will be

the nature of the discriminant function in such case, let us go back to the original g i X

where,  we  have  seen  that  g  i  X was  minus  d  by  2  log  of  2  pi  minus  half  log  of

determinant sigma i minus half X minus mu i transpose sigma i inverse X minus mu i

plus log of P omega i. 

So, here you find that as before I can remove this term from g i X because this is same

for all values of i whereas, in the earlier cases we had ignored this term as well half log

determinant sigma i because, sigma i was same for all the classes. Now, sigma i is not

same for all the classes it is different for different classes so, I cannot ignore this coming

more. So, that gives me that g i X will be simply minus half X minus mu i transpose

sigma inverse X minus mu i  plus log of P of omega i  minus d by 2 log of mod of

determinant sigma i right.



So, given this you will find that this expression is of the form X transpose A i X plus B i

transpose X plus C i. I can simplify this expression in this form X transpose A i X plus B

i  transpose X plus  C i.  And,  now find  that  because  of  the  presence  of  that  term X

transpose X I will have if the components are X 1 X 2 X 3 and so on of the feature vector

X; I will have terms X 1 square, I will have terms X 2 square, I will have term X 3

square, I will have term X 1 into X 2 X 1 into X 3 X 2 into X 3 X 2 into X 5 and so on.

So, that leads to a situation that the discriminant function g i X does not remain linear

anymore, but it becomes a quadratic discriminant function because of the presence of

quadratic terms.

And, over here this A i it will be simply minus half sigma i inverse and B i will be sigma

i inverse mu i and C i will be minus half mu i transpose sigma i inverse mu i minus half

log of P of omega i plus sorry, this is minus half log of determinant sigma i plus log of P

of omega i. So, C i will be minus half mu i transpose sigma inverse mu i minus half log

of determinant sigma i plus log of P of omega i. So, my discriminant function becomes a

non-linear or quadratic discriminant function.
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And, when I have such non-linear discriminant functions for to find out the decision

boundary between 2 classes omega i and omega j. Now, it is difficult to simplify as we

have done in the previous case unlike in the previous case. So now, what I have to do is I

have to find out what is g i X which will be as we have seen, it will be X transpose A i X



plus B i transpose X plus C i. Similarly, I have to compute what is g j X which will be X

transpose A j X plus B j transpose X plus C j.

And, to compute g X which is the decision boundary between the 2 classes I have to

compute g j X which is nothing, but g i X minus g j X and I have to equate this to equal

to 0. So, whatever expression I get that will be the decision boundary between the classes

omega i and omega j. So, now let us see what will be the decision boundary in this kind

of scenario.
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. So, for this again I take a set of feature vectors. So, a set of feature vectors say 9 10 9

14 7 12 and 11 12 which are taken from class omega 2, that is this one. And, I have a set

of feature vectors 5 4 9 2 9 6 and 13 6 which are taken from class omega 1 and the

feature vectors belonging to class omega 1 at these points right.

So, as before as we have done before given these feature vectors I can compute what is

mu 1 and what is mu 2 that is the mean of feature vectors taken from class omega 1 and

mean  of  feature  vectors  taken  from  class  omega  2.  And,  I  can  also  compute  the

covariance matrix sigma 1 and sigma 2 for this two different classes.
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So, what here my mu 1 that is the mean of the feature vectors from class omega 1 will be

12 6 and mu 2 will be 9 4 and the covariance matrix sigma 1 is 2 0 0 2. So, you find that

this 2 0 0 2 is the for variance matrix for these feature vectors, I think as we have doing

our doing earlier this sigma 2 and sigma 1 should actually be sigma 2; anyway that does

not matter much. And, for the other class your sigma or the covariance matrix is 8 0 0 2

which is the covariance matrix over here right.

So, you find that in the first case, in this case the points are spiritually distributed and

here the covariance matrix is of the form 2 0 0 2 which is nothing, but of the form sigma

square right. So, the points are spherically distributed whereas, in the second case while

my covariance matrix sigma 2 is 8 0 0 2, it is elliptical distributed. And, because the

variance  of  the  component  X  1  component  is  more  than  the  variance  of  the  X  2

component so; obviously, the spread in X 1 direction is more than the spread in X 2

direction and that makes it elliptical. So, given this to a set of feature points which are

vectors now as I find that the covariance matrix for the 2 classes are different.

So, my discriminant function for the 2 classes for the second class, where covariance

matrix is 8 0 0 2 will be a quadratic one whereas, the discriminant function for the first

case where, sigma 1 that is this one because it is of the form sigma square i the the

discriminant function for this class will be linear. So, over here my discriminant function

will  be quadratic  for this the discriminant function will  be linear. So, to find out the



decision surface between the 2 classes over here I simply have to make g i X minus g j X

and equate  that  to  0.  And,  after  equating  that  to  0 whatever  I  get  that  becomes  the

decision surface.
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You find that as we have done before that this is the expression of the covariance of the

discriminant function or the covariance matrix is not of the form i square i right. And, the

discriminant  function  is  a  quadratic  discriminant  function  and  given  this  particular

situation  if  I  try  to  find out that  what will  be that  decision boundary between the 2

classes.
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So, as we said that for this set of points the distant function will be linear one, for this set

of points the discriminant function will be a quadratic one. And, if I if I call it say g 1 X

and if I call it g 2 X the discriminate functions the equation of the boundary will be given

by g 1 X minus g 2 X that will be equal to 0. And, if you plot the decision boundary you

will find that the decision boundary will have a shape something like this which is not a

linear decision boundary anymore that we have obtained earlier. But, in this case the

decision  boundary  will  be  a  non-linear  decision  boundary  or  a  quadratic  decision

boundary well.

So, with this I come to the end of this lecture. So, in this lecture and the previous two

lectures what we have tried to do is, we have tried to find out the discriminant functions

of  different  classes  assuming  that  the  distribution  of  points  is  multivariate  normal

distribution.  And, there we have taken three different cases, in the first case we have

assumed that the covariance matrices for all the classes are same and they are of the form

sigma square i. 

And, we which case we have obtained the discriminant functions to be linear and not

only that the decision boundary between these different classes they are also linear. And,

under the situation when the a priori probabilities are same we have seen that decision

boundary is orthogonal bisector of the line joining mu 1 and mu 2.



In the second case we have assumed that the covariance matrices for different classes are

same,  but  they may not  be of simple forms in sigma square i.  In  that  case also the

discriminate functions we have found to be linear, decision boundary was also linear.

Decision boundary was a bisector of the line joining mu 1 and mu 2 under the situation

when  a  priori  probabilities  are  same,  but  the  decision  boundary  in  general  was  not

orthogonal to the line joining me 1 and mu 2 because, of the presence of the term sigma

inverse.  So,  that  direction  of  the  decision  boundary  in  that  case  depends  upon  the

variance matrix.

And, the third case was the more general case, where we assumed that the covariance

matrix  of  all  the  classes  are  different.  And,  in  which  case  we  have  found  that  the

discriminant  function  is  not  linear  anymore,  the  discriminant  function  is  a  quadratic

discriminant  function.  And,  given  such  quadratic  the  decision  boundary  to  be  the

discriminant function to be a quadratic one using that, if I try to find out the separating

boundary between the 2 classes; the separating boundary in general is quadratic, it is not

linear anymore. I will stop here today.

Thank you very much.


