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Hello, welcome to the NPTEL online certification course on Deep Learning.
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You remember that in the previous class we had started our discussion on Discriminant

function and the boundary between different classes. So, in the previous class we talked

about  the discriminant  function under multivariate  normal  distribution and in  today’s

class we are going to continue with our previous discussion and we will talk about, we

will see that how the decision boundary under different tosses under various conditions

of the covariance matrix we can have.

So, we can have linear boundaries, we can also have non-linear boundaries or quadratic

boundaries and this will also illustrate with the help of some examples.
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So, let us just try to start with what we had done in our previous class. So, in the previous

class we have said that the multivariate normal distribution is given by p of X as 1 over 2

pi to the power d by 2 then sigma determinant to the power half and then exponential

minus half  X minus mu transpose sigma inverse into X minus mu.  So, this  was the

normal  distribution  under  multivariate  case.  What  this  covariance  matrix  sigma  is

nothing, but X minus mu into X minus mu transpose and the expectation value of this

that is what is the covariance matrix and mu is the mean of all the samples all the vectors

that we have.
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So,  now  if  we  want  to  have  represent  this  as  class  conditional  probability  density

function, multivariate normal density function, then whatever they do is I have to get p of

X given omega i which will be 1 upon 2 pi to the power d by 2 and as we said in our

previous class that d is the dimensionality of the vector and then sigma now becomes

sigma i because it is the covariance matrix of all the samples taken from class omega i

and the other part  remains  exponential  minus half  X minus.  Now mu becomes mu i

because this is mean of the vectors taken from class omega i sigma becomes sigma i. So,

this is sigma i inverse there of course transpose into X minus mu i. So, this is the cross

conditional normal distribution.
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So, using this we have in our previous class found out that discriminant function for the i

th class where the discriminant function was obtained as g i X that is the discriminant

function for the i th class which was w i transpose X plus W i naught, where what is this

W i, we had seen that this W i is nothing, but 1 upon sigma square into mu i and W i

naught was minus 1 upon 2 sigma square mu i transpose mu i plus log of P of omega i.

And this is the expression we have obtained under the assumption that sigma i that is the

covariance matrix for all the classes is same and which is of the form sigma square I,

which indicates that the covariance matrix is a diagonal matrix or all the off the diagonal

elements are 0.



And all the diagonal elements of the covariance matrix is same as sigma square. What

does it physically mean? It physically means that the different components of the feature

vector that we have those components are statistically independent and every component

has the same variance that is the variance of X 1.

The first component is same as the variance of X 2 which is the second component like

this and every component the variance is same which is nothing, but sigma square. This

indicates that the way the training vectors, the vectors are distributed in the feature space

is like circle in case of two dimension, it is a sphere in three dimension and it is hyper

sphere in multi dimension; where of course at the center that density is maximum and as

you move away from the center, the density goes on reducing.

So, this is the physical significance of this sort of distribution where sigma i is of the

form sigma square i where this i is nothing, but our unity matrix.
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So, under this situation we have also stated in the previous class that if I have feature

vectors, they slip test coming from two different classes the i th class and j th class I can

find out g i X that is the discriminant function for the i th class, I can also find out g j X

which is the discriminant function corresponding to the j th class. And given this if I

want to find out what is the boundary, the decision boundary between these two classes

that is we say that if the feature vectors falls on one side of the boundary, it belongs to



one class I am it and if it belongs to falls on the other side of the boundary it belongs to

some other class.

So, I can find out an expression of the boundary which separates these two classes and

the expression of the boundary will be simply given by g X which is nothing, but g i X

minus g j X and because on the boundary g i X and g j X both of them will be equal. So,

this has to be equal to 0. So, our expression will be g X is equal to g i X minus g j X

which will be equal to 0.

And this just from the expression of g i X that we have obtained you can find that g i X

minus g j x, this will be simply given as 1 upon sigma square into mu i minus mu j

transpose X minus 1 upon sigma square mu i transpose mu i minus mu j transpose mu j

plus log of P omega i upon P omega j that will be equal to 0.

This can simply be put in the form mu i minus mu j transpose X minus this. There has to

be a half right half of mu i minus mu j transpose into mu i plus mu j plus sigma squared

log of P omega i upon P omega j that has to be equal to 0. And after simplification, you

can find that this expressions can simply be written as.
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W transpose X minus X naught that has to be equal to 0 where this W will be simply mu

i minus mu j and X naught will be given by half of mu i plus mu j minus sigma square



upon mu i minus mu j mod squared log of P omega i upon P omega j into mu i minus mu

j.

So, see what is the significance of this particular expression. It says the equation of the

boundary between the two classes i th class and j th class is given by w transpose X

minus  X  naught  equal  to  0  which  simply  indicates  that  this  boundary  is  a  linear

boundary. In case of three dimension it is a plane, in case of multi dimension it is a hyper

plane. For the vector W is given by mu i minus mu j which is nothing, but a vector drawn

from mu i to mu j where mu i is the mean of the vectors taken from class omega i and mu

j is the mean of the vectors taken from class omega j and the expression for X naught and

it says that because W transpose X minus X naught equal to 0.

So, the decision surface is obviously perpendicular orthogonal to the vector W and as W

is the vector drawn from omega i to omega j. So, the decision surface is orthogonal to the

line joining mu i and mu j and it passes to the point X naught. And here if you look at the

expression for X naught and particularly under the case if I consider that mu P of omega

i is equal to p of omega j, if I can use if I consider this condition that is both the classes

omega i and omega j they are equally probable, the a priori probability is same under this

case log of P omega i upon P omega j will be equal to 0. So, this term will be equal to 0

and in which case your X naught simply becomes half of mu i plus mu j. That means, X

naught is a point which is at the middle of the vector the line joining mu i and mu j.

So, under such circumstances where the a priori probabilities of the two classes are same,

your decision surface becomes an orthogonal bisector of the line joining mu i and mu j.

And obviously, the kind of decision that you take in this case that given an unknown

vector whether the vector should belong to class omega i or the vectors should belong to

class omega j, that decision will be taken by simply taking the distance of that unknown

vector from the mean vectors mu i and mu j.

So, whichever mean is nearest to this unknown vector x, the unknown vector will be

classified to that corresponding class. And obviously, if p of omega i and p of omega j

they are different that is a priori probabilities are different, that will give a bias in the

decision. So, if a priori probability for omega i is greater than a priori probability for

omega j, then your decision surface though it will be orthogonal to the line joining mu i



and mu j, but it will be shifted towards mu j indicating that more space is allocated to

class omega i.

Similarly, if mu j P of omega j is greater than P of omega i, in that case X naught will be

shifted towards mu i indicating that more of space will be allocated to class omega i in

which case your decision will be biased in favor of class biased in favor of class omega j.

So, now let us try to see an example that how this really works.

(Refer Slide Time: 15:31)

So, to illustrate this I take a set of points both from class omega 1 and class omega 2. So,

first I take a point say 12 4. So, I am considering a two dimensional feature space and the

features are say X 1 and X 2. So, first I considered a point 12 4, then I consider a point

12 8, then I consider a point 10 6 and say 14 6 and I assumed that these are the points

which are taken from class omega 1.

Similarly, I also consider another set of points say 9 10, 9 14, 7 12 and 11 12 and I

consider these points to be taken from class omega 2. And these are the points, so we call

as training samples because using these feature vectors I am going to train my classifier

and that is where what is the learning in this particular case. So, I have a set of points

from 1 class omega 1 and another set of points from class omega 2.
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Now given this  set  of points  first  I  consider  the points taken from class omega 1,  I

compute the mean vector mu 1 which is simply average or mean of all these vectors

taken from class omega 1 and then, that mean vector comes out to be 12 6 and once I

have this mean vector, then I have to compute the covariance matrix. And as we said that

covariance matrix is nothing, but the expectation value of X minus mu into X minus mu

transpose.

So, if I consider the first vector I call it say X 1 that is vector 12 4, I subtract the mean 12

6 from this. So, 12 minus 12 6 simply becomes 0 minus 2. So, a part  of the partial

covariance matrix simply X minus mu 1 into X minus mu 1 transpose in this case as is

shown here X minus mu 1 into X minus mu 1 transpose simply becomes 0 0 0 4. So, this

0 minus 2 as column vector is my X minus mu 1 and 0 minus 2 as row vector is X minus

mu 2.

In the same manner I also compute X 2 minus mu 1 into X 2 minus mu 1 transpose

which is m 2. That again comes out to be 0 0 0 4. I also compute X 3 minus mu 1 into X

3 minus mu 2 transpose; mu 1 transpose and that comes out to be 4 0 0 0.

Similarly, m 4 which is X 4 minus mu 1 into X 4 minus mu 1 transpose and that comes

out to be again 4 0 0 0. So, once I have these four matrices now the covariance matrix is

nothing, but the mean of all these four matrices.



So, the covariance matrix from class for class omega 1 which is sigma 1 is simply 1 upon

4 into M 1 plus M 2 plus M 3 plus M 4 and if you compute this, it will simply come out

to be 2 0 0 2 which is nothing, but matrix of the form 2 into I where this I is an unity

matrix.

So, this is what I get for class omega 1.

(Refer Slide Time: 19:38)

Similarly, for class omega 2, I consider all those feature vectors that have taken from

class omega 2 which you remember that the feature vectors were 9 10, 9 14, 7 12 and 11

12. So, using these four feature vectors I compute the mean of the vectors belonging to

class omega 2 and which in this case comes out to be 9 12. And once I have these mean

vectors  in  the  same manner  as  I  have done previously, I  am not  repeating  all  those

calculations. You can calculate the same way and you can find out that the covariance

matrix for class omega 2 will come out to be sigma 2 which is nothing, but 2. I again I is

the unity matrix. 

So, here you find that if you remember that for class omega 1, we had sigma 1 which

was 12 and for class omega 2, I have sigma 2 which is also 2 I. So, this is a case where as

we said earlier that sigma i is equal to i sigma square I. So, it is the same condition and

under which case we have seen that the discriminant functions will be linear and not only

that the decision boundary between the two classes omega i and omega j that will also be

linear. So, this is a perfect case of that where I have sigma 1 and sigma 2 to be equal and



that is 2 into i which is of the form sigma square I. And what is sigma square? Sigma

square in this case is 2. So, sigma is square root of 2. So, given this calculations now let

us see how the decision boundary will look like.
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So, come to the same set of points as we shown earlier that these points are belonging to

class omega 2 and these were the set of points which are taken from class omega 1. And

we have shown earlier that when the covariance matrix sigma i is of the form sigma

square i for all the classes, the decision boundary takes the form w transpose X minus X

naught equal to 0 where W is nothing, but mu 2 minus mu 1. That is the vector drawn

from omega 2 to omega 1 right or omega 1 to omega 2. If I compute the other way that is

g 1 X minus g 2 X here the computation was g 2 X minus g 1 X.

And the middle point will be given by there is a mistake it is not mu 1 minus mu 2 that it,

but it should be mu 1 plus mu 2. And the midpoint the point on this decision boundary is

given by X naught is equal to half of mu 1 plus mu 2 minus sigma squared mu 1 minus

mu 2 square into log of P of omega 1 upon P of omega 2 into mu 1 minus mu 2.

So, if you look at this if I consider the case that p of omega 1 and p of omega 2 that is a

priori probabilities to be equal, then this term will be equal to 0 and X naught will be half

of mu 1 plus mu 2 which is nothing, but the midpoint of the line joining mu 1 and mu 2.

And the decision surface being orthogonal to w which is nothing, but a line joining mu 1



and mu 2 are vector drawn from mu 1 to mu 2. My decision surface will be orthogonal

bisector of the line joining mu 1 and mu 2.

And that is what is this one, you have this blue line that is this which is the line joining

mu 1 and mu 2 here, this was mu 1 and this was mu 2 and this red dotted line which is an

orthogonal bisector of this blue line is the decision boundary between the two classes

omega 1 and omega 2.

And as I said that as I am assuming omega 1 and P omega 2 to be equal so, this X naught

is nothing, but midway between mu 1 and mu 2. So, given this if I have any point X

which is falling on this side of the boundary, the X will be classified two class omega 2.

Because I am considering these to be the vectors taken from class omega 2, whereas if I

have an unknown vector y falling on this side of the boundary, this unknown vector will

be  classified  to  class  omega  1.  And as  it  is  clear  very  clear  from here  the  kind  of

classification rule that we have is nothing, but a minimum distance classification rule

because for any point on this side of the boundary its distance from mu 1 will be less

than its distance from mu 2.

Similarly, for any point on this side of the boundary its distance from mu 2 will be less

than  its  distance  from mu 1.  So,  that  kind  of  classification  rule  that  you  have  is  a

minimum distance classification. So, this is what we get for a simple case when I have a

situation that mu i is equal to sigma square i.
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Now, let us go to the next case that when I have a situation that mu i a sigma i is equal to

sigma, but this may not be of the form sigma square i. What does it mean? It means that

the  covariance  matrix  of  the  samples  belonging  to  all  the  classes  are  same,  but  the

components of the vectors may not be statistically independent or in other words the off

diagonal  elements  of  this  covariance  matrix  may  not  be  0,  whereas  in  our  earlier

simplified case we had assumed that the off diagonal elements are 0, right.

So, given this situation my g i X if I compute from here as before the g i X was minus

half log of 2 pi minus half log of mod of sigma i, but now sigma i is equal to sigma. So,

it becomes minus half log of a determinant of sigma minus half X minus mu i transpose

sigma inverse. Now sigma i is equal to sigma so, it simply becomes sigma inverse into X

minus mu i plus log of P of omega i.

Again if I simplify this, you find that this is independent of the class, this is independent

of the class so, these two do not participate in discrimination. So, my g i X now becomes

same as minus half X minus mu i transpose sigma inverse X minus mu i plus log of P of

omega i and if you expand this, it simply becomes minus half X transpose sigma inverse

X minus 2 mu i transpose X plus mu i transpose mu i plus log of P of omega i.

As before  you find that  this  X transpose sigma inverse X this  is  class  independent,

because sigma is same for all the classes ; so, I can ignore this, I can remove this form

the  discriminant  function.  So,  the  discriminant  function  now  simply  becomes  mu  i

transpose, sorry here it should be there as a mistake. This should be 2 mu i transpose

sigma inverse X plus mu i transpose sigma inverse mu i.

So, what I get is mu i transpose sigma inverse X minus half mu i transpose sigma inverse

mu i plus log of P of omega i.  And this you find that this  is again of the form W i

transpose X plus W i naught and this equation is again a linear equation, where this W i

will now be sigma inverse mu i and W i naught will be minus half mu i transpose sigma

inverse mu i plus log of P of omega i.

So, I will stop in this stuff here in this particular lecture. So, here we are what we have

seen is starting from the discriminant function which you have seen that both in the case

where sigma i is of the form of sigma square i whereas, and also sigma i is equal to

sigma or decision or discriminant  functions are linear. In case of sigma i is equal to

sigma square i. We have seen that the decision surface is also linear and the decision



surface  is  orthogonal  to  the  line  joining  mu  i  and  mu  j  and  in  case  the  a  priori

probabilities are equal that this decision surface becomes an orthogonal bisector of the

line joining mu i and mu j.

And in the other case where my covariance matrix may not be a diagonal matrix and all

the variances of all different components may not be equal, but even in that case the

discriminant function g i X is a linear discriminant function. So, we will stop here today.

In our next lecture we will start from this point.

Thank you.


