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Hello welcome to the NPTEL Online Certification Course on Deep Learning.
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In the previous class we have talked about  topics like different types of pacifists like

Bayes minimum error classifier and Bayes minimum risk classifier. And, we have also

seen that Bayes minimum risk classifier under a specific case of 0 1 loss that is when the

loss function for a correct decision is taken to be 0 and the loss function for an incorrect

decision is taken to be 1 under that situation Bayes minimum risk classifier and Bayes

minimum error classifier, they are identical.

So, in today’s lecture we will talk about we will start from those Bayes classifiers and

then we will move on to what is known as discriminant function. And, then using the

Discriminant Function we will also try to derive and we will also try to demonstrate the

decision boundary between different classes.
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So, when we talk about a discriminant function you remember from the previous class in

case of Bayes minimum risk classifier or Bayes minimum error classifier what we said is

that for Bayes minimum error classifier if P of say omega i given X is greater than P of

omega j given X where omega i and omega j are two different classes and X is the

unknown input vector. In that case we classify the X to this class omega i and if I expand

this P of omega i given X is nothing, but P of X given omega i multiplied by the a priori

probability P of omega i, where P of X given omega i is what is known as the class

conditional probability density. 

P of omega i is the a priori probability and P of omega i given X is the a posteriori

probability based on which we make the decision that whether this unknown vector X

should be classified to class omega i or it  should be classified to class omega j.  So,

obviously if P of omega i given X is greater than P of omega j given x, then it is more

likely or more probable that your unknown feature vector belongs to class omega i. And,

this  is  what  we  had  derived  in  our  previous  lectures  using  Bayes  minimum  error

classification rule.
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And then Bayes minimum risk classification what we had said is for an unknown feature

vector X, if we take an action alpha i, then the risk involved is given by R of alpha i

given X. And, which we said that this is nothing, but lambda alpha i given omega j into P

of omega j given x. You take the summation over this for all the classes omega j.

So, for every action alpha i if I have say c number of actions, so i varies from 1 to c. So,

for every such action I have to compute this risk function. And. for whichever action the

risk  the  estimated  risk  R  of  alpha  i  given  X  is  minimum,  I  have  to  take  that

corresponding action. And, as we said that under a specific case when this lambda of

alpha i given omega j is equal to 0 for i is equal to j and if I take this equal to 1 whenever

i is not equal to j. That means, for every correct decision the loss incurred is 0 and for

every incorrect decision the loss incurred is 1 under that situation we had shown in the

previous class that Bayes minimum risk classifier and Bayes minimum error classifier,

they turn out to be identical.

Now, starting from here we can define something called discriminant function because

every time you find that whether I go for Bayes minimum error classification or Bayes

minimum risk classification,  in case of Bayes minimum error classification for every

class I am computing P of omega i given x, where i varies from 1 to c where c is the

number of classes that I have and for whichever i P of omega i given X turns out to be

maximum i classify X to that corresponding class.



Similarly, in case of Bayes minimum risk classification for every class I compute R of

alpha i given X and then for whichever class R of alpha i given X is minimum that is for

whichever  class for whichever  action the risk involved is minimum, I  am taking the

corresponding action or I am classifying X to that to that corresponding class. And, I can

say that in each of this case I am taking an action based on certain maximum criteria that

is  in  case of  Bayes  minimum error  classification  for  whichever  class  the a posterior

ability  is  maximum,  I  am  taking  that  corresponding  action  or  classifying  X  to  that

corresponding class.

Similarly, for Bayes minimum risk classification for whichever class R of alpha i given

x, so for whichever value of i are all R of alpha i given X turns out to be minimum or in

other case I can say that instead of considering R of alpha i given X, I will consider

minus R of alpha i given X. So, if R of alpha i given X is minimum, then obviously R of

alpha I given X minus R of alpha i given X will be maximum.

So, for whichever action this negative of the risk of value turns out to be maximum, I am

taking that corresponding decision or I am classifying X to that corresponding class. 
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.

So, or in other words I can say that I can define a function say g i X for class say omega

i. So, here X is the unknown feature vector and for every class I every class omega i, I

am computing a function g i X and for whichever i this g i X turns out to be maximum I

take decision in favor of that particular class or that particular omega i.



So, what I am doing is for an unknown feature vector X I will compute g 1 of X, I will

compute g 2 of X, I will compute g i of X and if there are c number of classes I will

compute g c of X. And, then I will try to find out that out of all these functional values

whichever is maximum. So, I take maximum of all of this and for whichever i this turns

out to be maximum I classify X to that corresponding class omega i. So, this is a function

that g i X i want to design for every class omega i. So, what are the possible options that

I can have g i X? 
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One of the option is obviously I can have g i X to be is equal to P of omega i given X

that  is  staright  forward  which  is  nothing,  but  P  of  X  given  omega  i  into  a  priori

probability P of omega i. So, this is a straightforward definition of g i X or I can also say

that I will use g i X to be minus R of alpha i given x.

So, here also if g i X is maximum I take that corresponding decision here also if g i X is

maximum I  take  that  corresponding  decision.  So,  out  of  these  two options  possible

options because there might be other options as well. Out of these two we will try to

explore this that is based on Bayes minimum error classification rule.
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So,  I  will  assume  that  we  will  use  this  discriminant  function  g  i  X  where  this

discriminant function is defined as P of omega i given X or it is also possible that instead

of P of omega i given X if I use a function of P of omega i given X where this function f

has to be a monotonically increasing function. That means, if P i given X is greater than

P of omega j given X, this should imply the f of P of omega i given X should be greater

than f of P of omega j given x. Let me rewrite this. So, this implies f of P of omega i

given X has to be greater than f of P of omega j given x.

So, that is f has to be a monotonically increasing function, then this form that is g i X as f

of P of omega i  given X that  can also be used as a discriminative function because

whenever g i X is maximum, the f of P of omega i X will also be maximum. So, given

this  you will  find  that  one very convenient  function  that  can  be used is  logarithmic

function. So, at or I can use natural logarithm l n. What is the advantage?
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The advantage is because P of omega i given X is nothing, but P of X given omega i

which  is  the  class  conditional  probability  density  function  that  can  be  estimated

experimentally into P of omega i which is the a priori probability of class omega i that is

also pre-computed. And, now if this f the function I used as the logarithmic function ln,

then the advantage that I get is l n P of omega i given X that turns out to be l n P of X

given omega i plus log of P of omega i. So, this multiplication state way is converted to

an  addition  operation  and  which  is  very  very  advantageous  in  many  computational

purposes.

So, I will use this particular form that g i X is nothing, but log of P of X given omega i

plus log of a priori probability P of omega i. So, this is the discriminant function form

that we will use in the remaining part of this lecture, right. So, given this let us try to see

that if I assume a particular form or a particular distribution function probability density

function which usually we use as a normal probability density function, then what form

of expression of  the  discriminant  function  that  we get  or  what  form of  the decision

boundary between classes that we get? 
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So, let us talk about this discriminant function under multivariate normal distribution. So,

we all know that the normal distribution if I have a single variable say p x is given by 1

over square root of 2 pi sigma e to the power minus x minus mu square upon 2 sigma

square. This is the normal density in case of a single variable x or scalar variable x where

this sigma is nothing, but standard deviation and sigma squared is the variance and mu is

the mean. 

And, you all know that the typical form of this is if I plot x and p x, the typical form is

like  this  where  this  is  what  is  your  the  mean of  x  that  is  mu and the  value  of  this

envelope depends upon the value of sigma or sigma square.

So, if sigma is lowered, the sigma square is low then I will have a distribution something

like this. If the sigma squared is high, then the distribution will be flat of this form. So,

this is the form that I get when x is a single variable or it is a scalar variable.
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But in our case since we are talking about feature vector which describes an object and

the feature vector consists of multiple number of features where every feature captured

some property or some attribute of the object. So, those features may be computed from

the shape of the object, they might be computed from the color of the object. They might

be computed from the intensity of the object, they might be computed from the texture of

the object and various such different properties are put together in the form of a vector or

a feature vector. So, the type of distribution that is important in our case is not a single

variant distribution, but it is a multivariate distribution.

So, in our case I have a feature vector X and let me assume that the dimension of the

feature vector is d. So, it  is a d dimensional feature vector right;  d is the number of

components or the number of features which are packed into this feature vector X. So,

given this the multivariate property density is now given by P of X which is 1 over 2 pi

to the power d by 2, then instead of variants now I have multiple variables. So, what I

have is a covariance matrix.

So, sigma is the covariance matrix. You take the determinant of that and square root of

the determinant into exponential minus half X minus mu transpose sigma inverse into X

minus mu that is what is the normal distribution form of normal distribution in case of

multivariates or in case of vectors.



Now, what we are interested in or the expression that we have that contains X given

omega i. That is the class conditional probability density and we said earlier that we get

this  class  conditional  probability  density  by  taking  the  feature  vectors  X from class

omega i.  So, when I take feature vectors X from class omega i,  so for those feature

vectors the mean that I will get is dependent and I will represent that by mu i. Similarly

the covariance sigma, the covariance matrix sigma that I compute will also be on for that

particular class omega i. So, I will also represent this as covariance matrix sigma i.

So, what I will do is I will put this class conditional probability density function, express

it in the form 2 pi to the power d by 2. Now, this sigma actually becomes sigma i because

this is for class omega i square root of that into exponent minus half X minus. Now, this

mu becomes mu i. It is for ith class transpose sigma becomes sigma i. So, it is sigma i

inverse into X minus mu i. So, this is my multivariate probability density function where,

sigma i is the covariance matrix computed over all the feature vectors which we call as

feature vectors because using those vectors, I am computing sigma i and mu i. 

So, it is the covariance matrix computed using those feature vectors taken from class

omega i mu i is the mean of those feature vectors taken from class omega i.
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Now, given this the way we have defined g i X is equal to log of P omega i given X plus

log of a priori probability P of omega i.  Now you find that P of omega i given X is



nothing, but 1 over 2 pi to the power d by 2, then sigma i square root of this exponential

minus half X minus mu i transpose. So, this is what is P of omega i given X.

So, once I use this logarithm, then my g i X it simply becomes minus d by 2 log of 2 pi

minus half log of sigma i minus half of X minus mu i transpose sigma i inverse X minus

mu i plus of course I have this log of P of omega i. From here you will find that d by 2

log of 2 pi this particular term is independent of the class because there is no term like

subscript i over here.

So, this minus d by 2 log of 2 pi, this does not differentiate between an ith class and jth

class. So, easily I can conveniently ignore this particular term minus d by 2 log of 2 pi.
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So, that simplifies my g i X as minus half log of P sigma i minus half X minus mu i

transpose sigma inverse X minus mu i plus log of a priori probability P of omega i. Now,

here I  can have different  cases;  say for example  this  covariance matrix  sigma i  in a

particular case in a specific case if all the components the components of the feature

vector X, they are statistically independent. Then covariance matrix that we get will be a

diagonal matrix and if every component has same variance, then this covariance matrix

sigma i will be of the form sigma squared I.

So, what I am assuming here that for all the classes the feature vectors that you obtain

the components of the feature vectors are statistically independent. So, that means if I try



to compute the variance involving say ith component and jth component because they are

statistically  independent.  So,  that  variance  will  be  equal  to  0  which  leads  to  the

covariance matrix to be a diagonal matrix, where only I will have diagonal elements to

be non-zero and all the off diagonal elements will be 0. And, then again if I assume that

all those components, for all those components the variance is same in that case all the

diagonal elements which are non-zero, they will be equal.

So, that ultimately leads to the covariance matrix to be of the form the sigma square I

and I am assuming this to be same for all the classes. That means, for every sigma I, I

have this covariance matrix for every omega i, the covariance matrix sigma i is of the

form sigma square I. So, the sigma squared is again same for all the features across the

classes. So, that is one of the simplified assumption that I can make the other assumption

that can be used is where sigma i is of the form sigma.

So, in this case it is not necessary that the different components of the feature vector will

be statistically independent, not even necessary that every component will have the same

variance, but what I am assuming is that whatever is the covariance matrix, the same

covariance matrix is valid for all the classes. So, this is a simplified condition, condition

2 and the third one where I have the most general case that every class will have its own

covariance  matrix  that  is  the  covariance  matrix  of  one  class  need  not  be  same  as

covariance matrix of other classes. So, that is the most general case which is case 3.

So, initially I will try to see that how this discriminant function look like when I assume

the first case that is covariance matrix of every class is of the form sigma square I.
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So, let us see this. So, what I have is g i X is equal to minus half log of sigma i minus

half X minus mu i transpose sigma i inverse X minus mu i plus log of P of omega i. So,

here as I am assuming that this sigma i the covariance matrix is same for all the classes.

So, this minus half  log of determinant  sigma i,  again this  does not have any role in

discriminating  among  different  classes.  So,  I  can  simply  ignore  this  term  from  the

function of from the expression of the discriminant function.

So, my g i X now simply becomes minus half  X minus mu i  transpose and sigma i

because it is sigma square I. So, the sigma i is of the form sigma square I. So, this sigma

i inverse is simply 1 upon sigma square. So, what I will do is I simply put it as 1 upon 2

sigma squared X minus mu i transpose into X minus mu i plus log of P of omega i which

simplify comes minus 1 upon 2 sigma square. If I expand this it becomes X transpose X

minus twice mu i transpose X plus mu i transpose mu i plus log of P of omega i. In this

expression again this X transpose X is class independent, right. So, again this term does

not contribute to discrimination.

So, I further simplify this as minus 1 by 2 sigma squared. What I have within the bracket

is minus 2 mu i transpose X plus mu i transpose mu i plus log of P omega i. You will

simplify this, it simply becomes mu i transpose 1 upon sigma squared mu i transpose X

minus 1 upon 2 sigma squared mu i transpose mu i plus log of P of omega i which I can

write in the form W i transpose X plus W i naught where this W i is nothing, but 1 upon



sigma squared mu i and W i naught is 1 upon 2 sigma squared minus 1 upon 2 sigma

squared mu i transpose mu i plus log of P of omega i.

So, find that the expression that you get is a linear expression. That means, under the

simplified case when all the components all when the components of the feature vectors

are statistically independent, all the components have the same variance sigma square

and this is same for all the classes. Or, in this particular case I am not assuming it is same

for all the classes, but I am considering only a particular class omega i. The g i X is

simply of the form of W transpose X plus W i transpose X plus W i naught which is a

simply a linear expression, right. So, from here I can try to find out that what is the

boundary between two different classes omega i and omega j.
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So, in order to do that let me again try to find out. So, that boundary I can simply defined

as g X and on a boundary I must have g i X is equal to g j X. That is the discriminant

functional value for ith class and for jth class; they should be same on the boundary.

So, the equation of the boundary can simply be written as g X is equal to g i X minus g j

X which is  equal  to 0.  So,  this  is  simply the equation of the boundary between two

classes  omega i  and omega j.  And,  what  we have seen is  that  for  g  i  X under  this

simplified assumption, we have seen that g i X is nothing, but minus 1 upon 2 sigma

squared into X minus mu i transpose X minus mu i plus log of P of omega i. Similarly



for g j X I will also have the case that it is minus 1 upon 2 sigma squared into X minus.

Now it will be mu j transpose X minus mu j plus log of P of omega j.

And, if I equate these two if I make g X is equal to g i X minus g j X to be equal to 0,

then  we will  find  that  by  putting  g  i  X,  this  expression  and in  place  of  g  j  X this

expression you will find that this g i X equal to 0. This will take a form W transpose X

minus X naught is equal to 0 where, you will find that this W is nothing, but mu 1 minus

mu 2. And, X naught will be same as half of mu 1 plus mu 2 minus sigma square upon

mod of mu 1 minus mu 2 square into log of P omega 1 upon P omega 2 into mu 1 minus

mu 2.

So,  this  is  the expression that  I  will  get  for  the boundary between the two different

classes. So, I will derive the expression of this boundary under this simplified case in our

next lecture.

Thank you.


