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Hello, welcome back to the NPTEL online certification course on Deep Learning. So, for

last few classes, we are talking about the generative model and particular model that we

are discussing is a Variational Autoencoder.

(Refer Slide Time: 00:41)

So,  we have  started  our  discussion  on the  variational  inference  which  is  one  of  the

theoretical modeling technique of the variational autoencoder.
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So, what we have discussed in our previous classes that z is a latent vector and when this

latent vector z is fed as input to your decoder or the generator, the generator is expected

to reconstruct your signal or the data x. Now, for x’s of different categories z’s will have

different distributions. So, what I need to compute is a posterior probability that is P

offset given x which is nothing, but P of x given Z into P of z upon P of x, where P of x is

integral of P of x given z, P z d z.

Now, here  we have seen that  the first  problem that  we faced is  that  this  integral  is

intractable. So, because this integral is intractable we cannot easily compute P of z given

x. So, P of z given x also becomes intractable. And the reason we said that why this is

intractable is z is a multi-dimensional vector. The dimensionality of vector z can be 10, it

can be 15, it can be 100, it can be 500 and so on. 

And because it is a multi-dimensional vector when I take this integral P x given z, P z d

z,  this  integral  also  have to  be  taken,  integration  has  to  be performed over  multiple

dimensions  which  is  not  an  easy  task.  So,  in  order  to  solve  this  problem  we  have

mentioned that there are two different ways; one is you go for Monte Carlo solution

simulation and the other approach is of variational inference approach. So, the technique

that we are discussing is what is known as variational inference approach.



(Refer Slide Time: 02:47)

So, in this variational inferencing technique what we have assumed that even though P of

z given x is intractable, but we assume there is a tractable distribution Q, this Q may be

Gaussian for example, and we want P of z given x to be similar to Q of z given x. So, if I

want  to  do  that  then  basically  what  you  have  to  do  is  you  have  to  play  with  the

parameters of Q which are nothing, but mean and standard deviation if it is a Gaussian

distribution; so, we have to play with these parameters of this distribution Q, so that Q

matches closely with the probability P of z given x. 

Or effectively  what  we want  to  do is  we want  to  find minimize  the  KL divergence

between P z given x and Q z given x. So, the KL divergence of P z given x with respect

to Q z given x. So, our objective is to minimize KL divergence of P z given x and Q z

given x. So, this is the objective with which we started.
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So, this is a minimization problem minimization of the KL divergence of Q z given x and

P z given x.

(Refer Slide Time: 04:06)

Then, through a series of derivations in the previous lecture we have seen that the KL

divergence of Q z given x P z given x is equal to the sum of minus Q z given x log of the

joint probability P x given P x z often Q z given x plus log of P x. I can rewrite this

expression as log of P x is equal to KL divergence Q P plus sum of Q z given x, log of P

x z upon Q z given x, where the summation is to convert z. And then we have seen, so



this is what we have derived after a series of derivations starting from minimization of

KL divergence Q P.

(Refer Slide Time: 05:02)

Now, here we have seen that because x is your training data and which is given. So, the

left hand side which is log of P of x that becomes constant. And we started with our aim

to minimize the KL divergence Q P between Q P. So, you find that this, right hand side

because the left hand side is constant log of P of x is constant, so, right hand side the KL

divergence of Q given P plus sum of Q log P upon Q, this is also constant. 

So, as this, right hand side is constant and we want to minimize the KL divergence, so if

I want to minimize the KL divergence that becomes equivalent to maximizing sum of Q

z given x log of P x z upon Q z given x when you take the summation over z.

So, this minimization of KL divergence between Q and P is identical becomes same as

maximizing this quantity sum of Q z given x log of P x z upon Q z given x and this is the

term which is  known as variation on lower bound. Now, why this  variational  Lower

bound or what is this variational lower bound?
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You find that as we have just derived that log of P of x is equal to KL divergence Q P

plus norm of Q log of P upon Q summation over z and we know that KL divergence is

always greater than or equal to 0. So, we have seen before that KL divergence is not

symmetric. 

So, if I want to find out KL divergence Q P and KL divergence P Q they will not be same

in general, but the KL divergence is always greater than or equal to 0 and it will be equal

to 0 when Q equal to P; obviously, because log of P by Q is when P and Q are same, then

log of P by Q is log of 1 which is equal to 0. So, when P and Q are same then KL

divergence is 0, but if P and Q are different then KL divergence will be greater than 0.

So, KL divergence is always greater than 0.

So, again analyzing this, right hand side you find that we have seen that our P x was

intractable,  and  here  you  find  in  this  expression,  in  this  case  when  I  consider  this

particular  expression,  this  is  constant,  this  is  always  greater  than  0  and  if  this  KL

divergence is equal to 0, then log of P of x is same as this particular term. Let me call this

term as L. 

So, log of P of x will be equal to L which is sum of Q z given x into log of P x z upon Q

x z given x. But if this is greater than 0 if this is positive say some value epsilon then

your log of P of x will be epsilon plus L; that means, L will be P minus epsilon. So, that



clearly says that this L which is sum of Q z given x into log of P x z upon Q z given x,

this quantity is always less than or equal to log of P x, right.

So, we know that P of x is intactable as a result Q log of P of x is also intactable, but I

know what is its lower bound. And what I want is I want to maximize this P of x, but

which is intactable, so I can derive, I cannot directly do it. But I have a lower bound. So,

because I have a lower bound if I maximize this lower bound and I know log of P of x is

always greater than this lower bound greater than or equal to this lower bound. So, if I

maximize the lower bound then effectively I am maximizing log of P of x or maximizing

P of x. So, that is how this concept of lower bound comes.

(Refer Slide Time: 09:22)

So, effectively the problem has boiled down that we started with or in to minimize the

KL divergence P Q and which has boiled it down to maximization of the lower bound

where lower bound is Q z given x, log of P x z upon Q given Q z given x. So, this

minimization problem has been converted to the maximization of this variational lower

bound term. 

So, our aim is now that we want to maximize this variational lower bound which is sum

of Q of z given x into log of P x z upon Q of z given x which will be same as log of Q z

given x sorry Q z given x into log of P x z into P z upon Q z given x summation over z.

They are equivalent because P x z the joint probability is nothing, but P x given z into P

z, right. So, I can always write that variational lower bound L is equal to Q z given x, log



of P x given z into P z upon Q z given x take the summation over z. And this is the term

that we want to maximize. So, effectively we want to maximize this.

(Refer Slide Time: 10:45)

Again, let us see that this term that sum of Q z given x into log of P x given z into P z

upon Q z given x this can be written as sum of Q z given x into log of P x given z plus

summation of Q z given x into log of P z upon Q z given x. And if you look at the second

term over here you find that second term is again another KL divergence, right.

So, what we have is if you further simplify this, you find that the first component of this

expression is an expectation of log of P x given z, where the expectation is with respect

to Q z given x and the, right hand side is negative of the KL divergence between P Q z

given x upon P of z and this entire expression I want to maximize, right. 

So, if I want to maximize this entire expression; that means, effectively what I have to do

is I have to maximize P of x given z and I have to minimize the KL divergence Q of z

given  x  P z,  right.  So,  now, let  us  see  that  how this  maximization  problem can  be

translated to an autoencoder architecture.

So, here you find that I have a few terms, one is Q z given x which tells you that given

your training data x the probability of your latent variable or the latent vector. Similarly,

P of x given z tells you that given a latent vector z to the decoder or to the generator the

probability of generating the data x, so that is P of x given z. And I have another term



which is P of z that is the probability distribution of the latent  variable or the latent

vector z itself. So, if I translate this maximization term in the form of an autoencoder I

will have something like this.
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So, this is what was our graphical model that given z you can generate x following P of x

given z that is the generator part and given x I can get the latent variable z following Q of

z given x which is my encoder part.  So, this  is what is the graphical model and the

corresponding network, neural network can be done like this that both P and Q can be

implemented using neural networks. 

And the neural network will be something like this, that Q z given x now is modeled by

the encoder network and P of x given z is  modeled by the decoder or the generator

network and in between I have z which is the variable  or the latent  vector which is

generated by Q z given x.

Now, if I simply go by this you find that it becomes an autoencoder model. But what

makes it variational autoencoder not just autoencoder is that that along with z I now have

our  distribution  which  is  P of  z  which  was  not  there  in  traditional  autoencoder,  in

variational autoencoder I have this P of z term. 

So, the encoder in this case it does not give me a deterministic latent vector z, but the

encoder  gives me a distribution of the latent  vector z and what  we effectively do is



during  generation  or  during  decoding  that  you  sample  a  vector  from  this  latent

distribution, distribution of the latent variables and that sample is fed to the decoder or

the generator and the generator generates the corresponding data which is x, right.
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So, this is what is our neural network for realization of that maximization problem. So,

this z code that we get now as we have just said it has to match with the distribution P z.

And what we will do is we will decide a prior for this P z that is prior distribution which

will be chosen for this distribution P z. And usually this P z is chosen to be a normal

distribution with zero mean and unit variance and we assume that the covariance matrix

is a diagonal matrix; that means, it is assumed that the components of the latent vector

they are independent of each other. 

So, as a result the off diagonal elements in the covariance matrix will be equal to 0 and

because every component will have unit variance. So, all the diagonal elements will be

equal to 1 or in other words your covariance matrix is an unit matrix. So, this normal

distribution that is assumed for P z is N of 0 I, and this is the prior that will impose on P

z.
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So, what finally our variational autoencoder gives is that instead of generating a fixed

code  for  an  input  to  the  decoder,  the  encoder  now  gives  you  a  parameter  of  the

distribution of the latent code. So, for a given input x the encoder generates a mean

vector mu x and it generates a diagonal covariance matrix sigma x and what we need is

we need to sample a vector z from this distribution and that vector z which is now my

latent  vector has to be passed to the decoder or the generator  and the generator  will

generate the data accordingly.
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So, this is what is our variational autoencoder and in explicit form in the architecture of a

neural network it looks like this. So, here you are feeding the data x to the input of the

encoder; the encoder gives you the distribution of the latent variable z. So, it gives you

the mean as well as the variance, then you sample a z from this distribution and feed this

z  to  your  generator  or  the  decoder  network  and the  decoder  network  gives  you the

reconstructed output x hat.

Now, find that when we talked about the traditional autoencoder we said that the decoder

in a traditional autoencoder was not of interest. In traditional autoencoder our interest

was the encoder part because we wanted to encode the input data or the input data has to

be  represented  in  a  compressed  form  which  is  useful  for  classification  or  for

understanding.

In case of variational autoencoder, our aim is exactly opposite. After your network is

trained we are no more interested in this encoder part, because the encoder has already

given you the distribution parameters mu and sigma. And once I have this I am only

interested in the decoder or the generator part because what I want is that because this

mean and variance are the parameters of the distribution of the latent variable is already

known I want to sample our latent vector z from that distribution, that sample is fed to

the decoder and the decoder has to give me the output x hat.

So, this encoder part is not of interest. We are not interested in the encoder part of the

variational  autoencoder  or  in  a  generative  model.  But  as  we  have  seen  in  case  of

traditional autoencoder where after training you simply discard the decoder. Similarly, in

this  case  after  the  training  is  over  or  once  you learn  your  distribution  of  the  latent

variables  you can discard the encoder part  because I do not need it  anymore for the

generation or the decoding purpose. So, that is what your autoencoder is.
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Now, again we have certain problems that you find that in this particular operation we

had an operation of sampling involved, because the encoder has given of the distribution

parameters and from that distribution have to sample a z to be fed to the decoder for

generation of the data.

Now, this sampling breaks the computational graph and it hinders the gradient descent

based optimization algorithm because to a sampling operator I cannot pass that gradient.

So, that is the problem. So, how do you solve this problem?
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So, effectively what we have is if again if we put in the form of a graph, so this is what I

have. This is the graph what the encoder has given me is the mu and sigma, those are the

parameters  of  the  distribution  and  then  what  you  do  is  you  sample  a  z  from  this

distribution Q z given x, for which I am already know the parameters mu and sigma, and

this sample z is fed to the decoder for decoding or generation of the data x. 

And because I have a sampling process involved my back propagation learning cannot

work anymore  because  through a  sampling  operator  the  sampling  operator  does  not

support  back  propagation.  So,  what  you  do  is  you  use  a  trick  which  is  known  as

reparameterization  trick.  So,  in  this  reparameterization  trick  what  you  do  is,  you

dissociate the sampling operator, the sampling operation from the network.

(Refer Slide Time: 21:25)

So, what  you do is  you sample from a normal  distribution with zero mean and unit

variance and after you get a sample you reparameterize it. So, suppose I sample a vector

say epsilon a variable epsilon, then I reparameterize it in the form z is equal to mu plus

sigma times epsilon, where mu and sigma are the parameters which are given by your

encoder network. And once you do this you find as has been shown over here, this is my

network part and this is the sampling operator. 

The sampling operator is now dissociated from the network. What we are doing is we are

sampling  epsilon  from a  normal  distribution  with  zero  mean  unit  variance  and  that

sample epsilon is now converted to z,  matched to z through this  parameters  mu and



sigma, and once it is done now it is fed to your network. So, this reparameterized vector

is now fed to the decoder of the generator and the generator gives the output, ok.

So, as the sampling process has been now kept out of the network. So, as a result I stop

the problem or I avoid the problem which we faced earlier that the sampling process or

the sampling operation does not support back propagation. So, now, with this I can easily

go for back propagation as shown over here, that as I have the latent variable z I can take

the derivative of my final output with respect to z or the error loss function with respect

to z. 

Of course, there is a chain rule involved in it because final loss function may not be

directly visible to z, so as a result to compute del L del z, where L is your loss function I

may have to apply chain rule and then I can compute del z del mu, I can also compute

del z, del sigma as has been shown over here. So, now your back propagation can simply

follow this path as well as this path, where the sampling process does not take place or

the sampling process does not hinder the back propagation operation.

So, because of this reparameterization it enables us the optimization of the parameters of

the  distribution  following  back  propagation,  while  it  still  maintains  the  ability  to

randomly sample data or sample a latent vector from that distribution because we have

kept the sampling process out, right. 
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So, let us try to see that how this cost function can actually be coded. So, you remember

that the cost function that we wanted to maximize is Q of z given, log of P of x given z

expectation value of that or the expectation value is with respect to Q z given x minus

KL divergence of Q z given x P z. And this is the lost function or the cost function that

we wanted to maximize. 

And if I want to do that what I have to do is, I have to maximize the expectation value of

log of P x given z and I have to minimize the KL divergence Q z given x P z. So, I have a

maximization operation involved, I have a minimization operation involved.
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So, if you look at this maximization part that is maximization of the expectation value of

log of P of x given z with respect to Q z given x, this is a maximum likelihood estimation

and you find that my decoder is just a neural network. So, once I have a z my output x

hat that is deterministic, there is no non-determinism involved in it. So, this P of x given

z is equivalent to P of x given x hat, where x hat is your reconstructed value or the

generated data. 

And this effectively means, that I this effectively tells you that you have to reduce your

reconstruction  error between input vector  x or input  data  x and the generated or the

reconstructed data x hat. And this is similar to what you do in case of a discriminative

supervised model. For example, logistic regression, SVM or linear regression or all that.



So, in other words given an input z and an output x, we want to maximize the conditional

distribution P of x given z under some model parameters and we have to play with the

model  parameters  you  have  to  modify  them  for  model  parameters.  So,  that  this

distribution P of x given z can be maximized or P of x given x hat can be maximized or

the reconstruction error between x and x hat can be minimized. 

And  this  can  be  implemented  using  any  classifier  with  input  z  and  output  x,  then

optimize the object objective function by using for example say, log loss or regression

loss. So, that is how the maximization part over this can be implemented.
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And for minimization of the KL divergence, what you do is you assume that P z follows

a normal distribution with zero mean and unit variance, so that we can play around with

the parameters of Q z given x towards this normal distribution or the parameters of Q z

given  x  can  be  pushed  towards  this  normal  distribution.  And  that  is  how the  scale

divergence has to be minimized.

So, assuming this P z, the distribution P z to have a normal distribution that has two

advantages. Firstly, because it is a normal distribution with zero mean and unit variance,

I can easily sample a vector epsilon from this distribution, right and then we are going

for  reparameterize,  reparameterizing  and  assuming  this  Q z  given  x  to  be  Gaussian

distribution with parameters mu x and sigma x that allows our KL divergence between Q

z x, P z to be enclosed form and that becomes easy for optimization.



So, I will stop this lecture here. In our next lecture, we will discuss from this point and

we will also briefly talk about another generative model which is known as generative

adversarial network.

Thank you.


