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Hello, welcome back to the NPTEL online certification course on Deep Learning. So,

from our previous lecture  we have started discussion on the generative  model  and a

particular  model  that  we  are  discussing  about  is  what  is  known  as  Variational

Autoencoder.

So, unlike in case of discriminative models in case of generative model what you need is

that  given  a  latent  description  of  the  object  of  the  image,  the  generator  network  is

expected to generate an image or an impression of that particular object. So, that is what

generative network does. Unlike in case of discriminative network where the input to the

network is an image or an object and the network has to classify that object into one of

the known categories.  So,  that  is  the difference between a generative  network and a

discriminative network. 

(Refer Slide Time: 01:25)

So, in our previous lecture, we have given a brief introduction to the generative model

and we have said that what we have discussed previously that is traditional autoencoder,

the decoder part of the traditional autoencoder can act as a generative model, but we



have discussed about what is the limitation of that autoencoder or traditional autoencoder

why it cannot be used as a generative network. 

Then,  we  have  also  talked  about  the  intuitions  between  the  variational  autoencoder.

Today, we will talk about variational inference and we will see that tactically how of

variational autoencoder can be implemented. So, let us briefly recapitulate what we have

done in our previous lecture. 

(Refer Slide Time: 02:15)

So,  this  diagram shows we have  shown how the  latent  variable  is  generated  by our

traditional autoencoder and a variational autoencoder. So, given these images as shown

over here a very variational autoencoder for each attribute which is learnt during the

training of the autoencoder, the variational  autoencoder  for every descriptor or every

attribute tries to find out the position of the attribute in the latent space as well as the

range of that attribute or the variance of that attribute in the latent space as shown over

here.

Whereas, a traditional autoencoder assigns a fixed value to different attributes. Say for

example, in this particular set of figures if you look at the first diagram the first image

you cannot  say that  the boy is  smiling  which is  not  very apparent.  So,  a  traditional

autoencoder assigns a very small value and in this case it is a negative value to that

particular  attribute  smile.  Similarly, over here coming to the same attribute  smile we

cannot say that this is a smiling face, right. So, the traditional autoencoder has assigned



will assign a value something around 0 to that particular attribute smile. Whereas, this is

a  smiling face.  So,  traditional  autoencoder  will  assign a high value to this  particular

attribute smile.

Against,  this  if  you  look  at  what  kind  of  descriptors  or  the  values  the  variational

autoencoder is expected to give it is not expected to give a specific value to a particular

attribute, but it is expected to give the position of the mean of that value and around that

around that mean what is that range over which that particular attribute may vary. So,

that is what is given in case of variational autoencoder as given over here. 
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So, given this, so variational autoencoder instead of giving a deterministic latent code

which is given by traditional  autoencoder. In case of variational  autoencoder, we are

interested to learn the distribution of the latent code that is coming if  I say that this

distribution is a Gaussian distribution or a normal distribution. We are interested to learn

what is the mean of that distribution and what is the variance of that distribution. 

So, for example, as we have just seen that for that particular attribute smile, it is more

intuitive to determine the range of smile value for a face instead of an absolute smile

value as is given by our traditional autoencoder. So, in case of variational autoencoder

instead of a deterministic  code the variational  autoencoder  will  output  the mean and

standard deviation  of each component  of the latent  vector  or each attribute  which is

learnt during the training process.
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So, now as we said that once we have a distribution of the variables of the distribution of

the latent vector you can sample a latent vector from that distribution and pass that latent

vector to the generator model or the decoder and using that the generator can generate an

image. So, that is our aim of a variational autoencoder.

(Refer Slide Time: 06:05)

However,  because  now  we  are  going  to  learn  the  distribution  we  want  that  to  the

distribution should be as compact as possible and as we also want to interpolate between



different objects to have different combinations. We also like to have that distributions as

generated by different objects should be as close as possible. 

So, actually, the kind of distribution that we would like to have is something like this as

shown here. But while training the network may converse to a situation of this form,

where the means of different categories of images or different classes of images this

means  become  widely  different  from  each  other.  So,  we  not  only  want  that  the

distribution  of  every  category  should  be  compact,  we also  want  the  distributions  of

different categories this should be as close as possible. 

So, in order to do that what you do is you impose a prior distribution. We say that each of

the  distributions  of  individual  categories  should  be  as  close  as  possible  to  a  prior

distribution and this prior distribution is usually taken as a zero mean Gaussian with

variance of 1 or unit variance. 
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And then  you try  to  find  out  the  KL divergence  between  each  of  the  distributions;

distributions of the latent vectors from each of the categories and the prior distribution

that we want to impose. And this KL divergence has to be minimized. So, if we want to

minimize this KL divergence basically every distribution tries to be as close as possible

to the center in your latent space and all the distributions become very very close. 
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So, effectively what we get is something like this that for while training the network for

every category we have our data loss component and we also have a KL divergence loss

component. So, the data loss component or the reconstruction loss component will try to

make  the  distribution  of  every  category  very  compact  and  minimization  of  the  KL

divergence  component  will  try  to  encourage  encodings  from  different  inputs  to  be

clustered about the center of the latent space.

So, with this now the network creates clusters in, if the network tries to create clusters

for different categories in different regions in the latent space then KL divergence loss

will penalize that and we will bring try to bring those distributions,  those clusters as

close as possible towards the center of the latent space. So, as a result the kind of data

distribution or the latent vector distribution that we get is something like this. 
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If you use only reconstruction loss or only the data loss component in that case the latent

vectors coming from the images of the same category they try to form the clusters as

shown in this particular image, as shown in this image. Where, you will find that the data

coming from different categories they become their form clusters, but these clusters are

spread in your feature space of the latent space. 

If I used only the KL divergence loss; what we said that the KL divergence loss we try to

minimize the KL divergence between a prior probability distribution which is zero mean

Gaussian with unit variance and the distribution that we get from the training data. And if

I do not impose any reconstruction loss then all these distributions will try to be same as

the distribution the normal distribution with zero mean Gaussian with unit variance. And

the data distribution for all the classes will be something like this.

So, you will find that one both the cases the generator or the decoder find it difficult to

reconstruct the image. In this particular case, if I have if I sample a data point over here,

somewhere here, then as this data point was never seen by the decoder; the decoder will

not be able to reconstruct what is to be reconstructed out of here, out of this particular

latent distribution. So, what the decoder will generate may not be meaningful. 

Whereas,  if  I have a situation like this here you find that the latent  vectors from all

different categories they are zero mean Gaussian with unit variance. So, as a result you

have lost the structural information of the data or the class identity of different data. And



because we have lost the class identity or the structural information of your data again

the decoder does not know what to generate because every latent vector coming from all

different categories their same to the decoder. 

So, here if you find that on the right hand side what we have shown is if you apply both

the  KL divergence  and  the  reconstruction  loss,  in  that  case  you  find  that  the  data

belonging to  different  categories  they have from their  own cluster, at  the same time

globally  all  these  distributions  come closer  and give  a  compact  cluster  of  the  latent

vectors. 

And this is the one which is ideally suited for the reconstruction purpose because now

my latent bases or the distribution of the feature vectors is very compact. So, if I take any

point or sample any point from any of the distributions and pass it to the decoder or the

generator the generator will be able to generate a image out of that particular sampled

latent vector. So, this is what we had discussed in our previous class.

(Refer Slide Time: 12:34)

So, here, you find that we have two different components, one is clustering or forming

compact clusters of the latent vectors coming from a category of images and this can be

attributed  to  the  reconstruction  loss  or  minimization  of  the  reconstruction  loss

component. And the other pushed part is all the distributions they have to be very close

to each other. And this is the part which can be attributed to the minimization of KL

divergence loss component. 



So,  now, as  every  new  cluster  is  compact  and  the  distributions  all  of  all  different

categories they are also very close to each other. So, that simply means that, if I simply

take a vector a latent vector at random from this latent space then the decoder will be

able to successfully decode or reconstruct the corresponding image. And because they

are very close, all the distributions are a very close, so it is in a continuous form. 

So, if I sample a vector from that latent space which was not used during the training

process, but the decoder can give you a reconstruction which is basically interpolation of

two  different  samples  in  individual  distributions.  So,  when  you  go  for  variational

autoencoder, the encoder part unlike in case of traditional encoder instead of giving a

deterministic vector latent vector it gives you actually a distribution indicated by mean

and variance of the distribution, we are assuming that these distributions are normal or

Gaussian in nature. 

(Refer Slide Time: 14:27)

So,  effectively  what  we  want  is,  let  us  have  a  graphical  model  of  this  variational

autoencoder. So, we have our input data which is x and we have a latent vector which is

generated out of x which is z. Now, the generator part what will do it will do is this z is

sampled from the distribution in the latent space and from this sample z the generator or

the decoder is likely to generate my data, I expect that it will generate the data which is

x. 



Now, as we have just said that in the latent space we also want to maintain the class

identity or the structural information of all the data. So, data for different categories will

have  different  structural  information  and they  will  have different  identities.  So,  as  a

result we want to compute a posterior probability which is P z given x, because for x of

different categories the probability of getting a latent vector z we will be different. So,

we want to compute P z given x and you find that P z given x is nothing but P of x given

z into P of z upon P of x and this is what you get from Bayes rule. 

Now, over here you will  find that if  I want to compute P of x which comes in that

denominator P of x is simply given by P of x given z into P z into d z you integrate this

over  z.  Now, here  comes  the  first  problem of  the  first  challenge  that  we  face,  the

challenge is that this integral that is integration of P of x given z P z d z it is intractable.

Why is it intractable? The reason being when I consider this vector z, the z is a multi-

dimensional vector, it is the dimension maybe 10, it its dimension maybe 15, dimension

maybe 100 and so on. 

And if it is so, then this integration what we have shown over here. Let me change the

color that integral P of x given z into P z d z as z is multi-dimension, multi-dimensional,

so this integral also has to be taken over a multiple dimension. So, if the dimensionality

of z the latent vectors z is 100, then this integration will be over a 100 dimensional space,

and  which  is  very  very  difficult.  So,  that  is  the  reason  we  say  that  this  integral  is

intractable. So, as this integral is intractable then what is the way out? 



(Refer Slide Time: 17:33)

What I can do is we can assume that there is a tractable distribution Q and we want that

this P of z given x has to be similar to P of z, a Q of z given x, where this Q is a tractable

distribution,  fully tractable distribution and we assume that this distribution will be a

Gaussian and it will have a mean and a variance. 

And if I want to minimize I mean how I can make this P of z given x similar to Qs of z

given x I had to minimize the KL divergence between Q and P and by minimization of Q

and P what I am effectively doing is, I am effectively playing with the parameters of the

distribution P such that it becomes similar to Q, where Q is tractable. We know what it is

distribution, right.

And we are assuming that it is a Gaussian distribution with certain mu mean and certain

variance. So, our objective now becomes that we have to minimize the KL divergence

between Q and P. So, now, let us say what is this KL divergence. 
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The KL divergence is defined as between Q and P is defined as sum of Q x log of Q x

upon P x you take the summation over all x that becomes the KL divergence between Q

and P. Before going further let us try to discuss that how this KL divergence or what is

the genesis of this KL divergence.

(Refer Slide Time: 19:38)

So, suppose we have a probability two probabilities, one is p x, other one is Q x. So,

when the probability distribution is p x, we know I can compute the information content.

The information content is given by minus p x, then log of p x take the summation over



x. So, that gives you the information content when your probability density is P of x.

Similarly, the information content when the probability density is Q of x is Q x log of Q

x take the summation over x with a negative sign. 

So, now if I want to find out what is the difference or the divergence between these two

probabilities, I can estimate that using what is the difference of information content of

these two probabilities. Or in other words, what I want to find out that minus p x log of p

x minus minus Q x log of Q x summation of this, so that becomes plus sum of Q x log of

Q x. 

Now, in KL divergence, so what is what are these two components? This is nothing, but

the expectation value of log of P x, where the expectation is taken with respect to P of x

this is the expectation value of log of Q x, where the expectation value is taken with

respect to Q of x. Now, in KL divergence this expectation of log of p x is taken with

respect to Q x. So, if I take it with respect to Q x this simply becomes minus Q x log p x

plus sum of Q x log of Q x. So, effectively this is nothing, but sum of Q x log of Q x

upon P of x and this is what is the KL divergence and that is what we have just said.

So, let us come back to this, that the KL divergence between Q and P is given by Q x log

of Q x upon P x take the summation over x. And just an illustration,  that how can I

compute the KL divergence given two different distributions. So, here we have taken two

distributions, one distribution is P which is a binomial distribution with p equal to 0 and

N equal to 2 and the other distribution is an uniform distribution with p equal to 1 by 3,

and this table on the right shows you this distribution in the in a tabular form. So, now,

let us see that how we can compute the KL divergence between these two distributions.
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So, given this the KL divergence KL P given Q is simply P x log of P x upon Q x which

is if you compute this over here taking the values from this table that we have said the

value comes out to be 0.0414. Whereas, if I compute the KL divergence between Q and

P, so it was KL divergence P Q, this is KL divergence Q P following this equation. Again,

taking the values from this table if you compute this the value comes out to be 0.0375. 

So, this gives you one information that KL divergence between P Q is not same as KL

divergence between Q P or KL divergence is not symmetric. So, KL divergence P Q is

not same as KL divergence Q P. So, truly speaking, I cannot use it as a distance metric

because distance metric is usually symmetrical. And the other thing is the KL divergence

is always greater than 0. 

So, though it is not symmetric, but KL divergence is always greater than 0. So, using KL

divergence I can estimate that what is the divergence or difference between two different

distributions and if I want to make those two distributions very close, then what I have to

do is I have to minimize the KL divergence and that is what is done in this particular

case. 

So, what we have seen before is that we have seen that this P of x is intractable. So, if it

is intractable then there are two ways to deal with it, one of the option is you go for

Monte  Carlo  simulation  and  the  other  option  is  you  go  for  variational  inference



technique.  So, what we are going to discuss in this lecture is what is this variational

inference technique. So, let us see what is this variational Inference technique. 

(Refer Slide Time: 25:15)

So, you remember that our aim is that we want to minimize the KL divergence Q P,

because P is intractable we have assumed a tractable distribution Q z and we want to

minimize the KL divergence, so that P becomes similar to Q, the distribution Q which is

tractable. 
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So, effectively this KL divergence Q z given x and P z given x, as you have just seen that

this is nothing, but sum of Q z given x into log of Q z given x upon Q z given x. You can

go further, it simply becomes log Q z given x into log of P x z, again coming from your

base theory upon P x into (Refer Time: 26:15) that given x you take the summation over

z. So, that is the KL divergence between Q and P. 

(Refer Slide Time: 26:20)

If you expand it further the same expression as you see over here that my expression was

Q z given x log of P x z upon P x into Q z x. So, if I expand this simply further, simplify

this the expression becomes summation of with a negative sign Q z given x into log of P

x z upon Q z x, z given x minus a log of P x. You go on simplifying, it becomes minus

sum of Q z given x into log of P x z upon Q z given x plus sum of Q z given x into log of

P x summation over z. 

Now, here you find that you are taking the expectation, I mean the second component of

this expression which is this one, this is nothing but expectation value of log p x with

respect to Q z given x and the summation is taken over z and P x is independent of z. So,

I can take P x out.

So, effectively what I will have is this, if I take log of P x out of the summation then sum

of Q z given x over all z this is nothing but 1. So, the same expression is now simplified

to minus sum of Q z given x into log of P x z that is the joint probability upon Q z given

x plus log of P x.
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I can derive this expression in this form. So, this is the expression that you have got. You

can rewrite this as P of or log of P x is equal to KL divergence between Q and P plus sum

of Q z given x into log of P x z upon Q of z given x. 

(Refer Slide Time: 28:30)

You go on simplifying further. Here you find that since x is given, so the left hand side or

log of P of x log of P given x is fixed because x is done. So, but our aim is to minimize

the KL divergence Q and P; KL divergence between Q and P. So, given this expression

that log of P x is equal to KL divergence between Q P plus sum of Q z given x into log of



x  z  upon  Q z  x  and  here  since  the  left  hand  side  is  constant  minimization  of  KL

divergence amounts to maximization of some of Q z z given x into log of P x z upon Q z

given x. 

So,  you  find  that  we  have  come  to  a  maximization  problem,  we  started  with  a

minimization problem of the KL divergence between two given distributions and while

simplifying we have now seen that it is same as maximizing sum of Q z given x into log

of P x given z upon Q z given x. We will stop today’s lecture here. In our next class, we

are going to start from this point onwards.

Thank you.


