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Hello,  welcome  to  the  NPTEL  online  certification  course  on  Deep  Learning.  You

remember that whatever we have discussed so far that belongs to a class of the networks,

where the purpose was to discriminate among different categories. Or in other words

whatever we have learnt or the network has learnt based on that what the network does is

given an input image or given an input object, the network tries to classify that input

image or the input object to one of the known classes or one of the known categories.

So, the neural network of the deep neural network has learned those different categories

during the training process with the by means of a learning algorithm which was back

propagation algorithm, wherein the gradient descent operation was followed where the

gradient descent operation tried to minimize the loss function, where the loss function

indicates that what is the accuracy of the decision that is taken by the neural network.

So, during training we give a pair, you give a training sample or in the training data

which is labeled data. So, at the output you feed the data at the input and you find out

what the neural network is giving at the output or what is the decision that the neural

network is taking. And because we knew that what is the level of that particular data or

what is the actual class belongingness of that particular data, so we can find out that

whether that class belongingness and whatever the neural network was telling us was

giving the decision whether these two decisions are matching or not.

So, if these two decisions match that is the actual class belongingness and the decision

given by the neural  network,  if  they match  in that  case we do not  need to train the

network anymore because the network is giving the correct decision. But in case the

decision taken by the network does not match the actual class belongingness of the input

data, then we have to train the neural network, so that the error that you get at the output

that is minimized or the error is reduced to 0. And for that the approach that was taken

was  gradient  descent  approach  and  the  algorithm  was  back  propagation  learning



algorithm. And the networks that we have discussed so far they are discriminatory in

nature.

(Refer Slide Time: 03:05)

So, what we are going to discuss today is what is known as generative model. So, unlike

the discriminative model, in case of generative model we give some description of the

object or some description of the image and we expect that the network will be able to

generate or will be able to create the object or will be able to create the image based on

the description which has been given.

So, as we expect the network to generate the image, so the model is a generative model

and while doing so, we will try to see that a closely related network that we have already

discussed before which is an auto-encoder. So, we will try to see what are the limitations

of the auto-encoder and the particular generative model that we will discuss today is

what is known as variational auto-encoder. 

So, we will try to find out or we will try to discuss what is the difference between auto-

encoder and of variational auto-encoder, and then we will discuss about an algorithm

which is known as variational inference which is used to train or which is the theory

behind training of a variational auto-encoder. And then, we will also try to see that how

the  variational  auto-encoder  can  actually  be  realized  in  practice  using  the  neural

networks.



(Refer Slide Time: 04:37)

So, let us first see that what is this generative model. Suppose, we wanted a network to

generate an image of an animal where we give some description of the animal. So, we

say that it is a big animal, so the animal has four legs, it has big ears, it has a long trunk,

it has a pair of tasks and things like that. So, you can try to describe the animal with the

help of these different attributes or these different descriptions. 

So, naturally, given this description that that is a big animal, it has four legs, it has big

ears, it has long trunk, it has a pair of tasks the kind of animal that will come to once

mind immediately that it  must be an elephant.  So, you try to draw the picture of an

elephant, right.So, that is what is the generative model. You are giving some descriptions

and based on the descriptions the model tries to generate an image of the animal or the

model  tries  to  generate  the  object.  And  the  descriptions  that  we  are  giving  these

descriptions are what is known as latent variables. So, all these latent variables putting

together that becomes a latent vector or a latent descriptor of the object or the image.



(Refer Slide Time: 06:10)

So, once we have this as we have already shown before that a closely related network

that we have already discussed is what is the autoencoder or will say call it a traditional

autoencoder. So, what this autoencoder does? Given an input image or input data the

autoencoder  maps  this  input  data  to  a  latent  code  via  an  encoder  network.  So,  this

encoder network is what we have shown over here. So, here what is shown is the encoder

network.

So,  the  autoencoder  is  generating  a  latent  code  say  vector  z  through  this  encoder

network, and then we have another network which is the decoder network that is on this

part. The decoder network regenerates or creates the input image of the input object from

this latent or code that has been generated by the encoder. And you remember that when

we talked about the autoencoder we said that our purpose is that once you get a latent

code from an encoder network, you simply forget the decoder part. So, this latent code is

actually used for recognition or for classification purpose. 

The decoder network is used for training time only, when you train the autoencoder, so

that your latent code becomes a representative of the input data in order to ensure that

you use the decoder network. But once your autoencoder is trained you simply forget

about the decoder network. So, you simply use the input autoencoder, the autoencoder

output which is the latent code and this latent code is later on used for classification

purpose and we have said before that we can have different types of classifiers which



takes this latent input, this latent vector as an input and gives its decision as to which of

the categories your input data belongs. 

So, intuitively we can say that when this encoder is creating this latent vectors, it creates

or gets the create the description of different attributes, say that the attributes may be

smile, it may be skin tone, it  may be gender, it  may be beard, whether the person is

wearing glasses, glasses, whether the hair color is black and so on. So, all these different

descriptors or different attributes for each of these different attributes the autoencoder

tries to get a numerical value and this is generated during the training process. So, given

such autoencoder let us see that what is missing in this autoencoders.

(Refer Slide Time: 09:11)

So, basically what the autoencoder is giving? Autoencoder is giving us a code for an

input data where this code is a compact representation of the input data, so that using this

compact representation we can classify the input data. Whereas, what is required in case

of generative model is our generative model is not for classification purpose. 

So, in case of generative model we need a latent space, so that we can sample a vector as

we can sample a code from that latent space and we can get a realistic reconstruction

corresponding to that latent code which is given by the generator or the decoder. Usually

or in general the auto encoders do not allow such is interpolation in latent space because

the latent space which is generated by the traditional auto encoders are various parts, are

not, they are not compact or they are not continuous. 



So, this auto encoders are not really meant for generation or for creation of the images or

creation of the data, they are actually meant for the classification purpose. Whereas, in

case of a generative model I want a decoder, so that this decoder will get an input data or

code a latent vector and from that vector it can generate an output which will be our

realistic object or a realistic image.

(Refer Slide Time: 10:52)

So, what I mean is let us take this particular example. Suppose, I have an autoencoder

model and autoencoder as we have seen that the encoder part of the autoencoder gives

you a latent vector or a code which is a compact representation of the input vector. So,

suppose we train this autoencoder using a large number of say Barbie dolls and using a

large number of say fish, ok. 

So, when you go to latent space suppose in the latent space all the Barbie dolls they are

coded  in  a  space  there  is  something  like  this.  Whereas,  when  you  are  training  this

autoencoder using fish maybe you are creating a set of vectors somewhere over here, so

you find that in both these cases, it is quite sparse all the codes which are learnt by the

autoencoder the codes are quite sparse. 

Now, what happens? If I take a point somewhere over here, so this gives me a latent code

and I feed this latent code to the decoder to reconstructions. Now, you find that in case of

autoencoder the autoencoder has never seen such a data. So, the autoencoder will be at

loss to what is to create. So, that is why this big question marks. On the other hand, if I



go for variational autoencoder in that case what is expected of variational auto encoder is

something like this, because in case of variational autoencoder it learns the distribution

or  the  probability  distribution  of  the  vector  z,  so  I  can  have  a  smooth  interpolation

between any set of vectors, ok. 

So, this is just a hypothetical example that maybe if I use a variational autoencoder, then

the variational autoencoder will try to interpolate between the Barbie dolls and the set of

fishes, ok. So, somewhere over here it is in between fish and Barbie doll and it may

create something like a Marbet something like this.

So, this is just an hypothetical example. And what we are trying to, what I am trying to

say is that what is expected out of a generative model which in this case what we are

discussing is a variational autoencoder.

(Refer Slide Time: 13:50)

So, given this example now let us see that why autoencoder cannot give us such a kind of

reconstruction. So, autoencoders, what they are giving is they are making us or they are

giving us distinct cluster for each object class or each image class. So, as shown over

here. So, you find that this is an output from the m nested database, where the feature

space or the latent vector space is a two-dimensional vector space. 

So, here you find that different numerals, m nested database if you remember that those

are database  of different  handwritten numerals.  So,  you find that  when you train an



autoencoder,  the  autoencoder  gives  you  distinct  clusters  of  the  latent  vectors  z  for

different classes. So, you find that for one there is one cluster, for two there is another

cluster and so on. 

And these clusters of these vectors are quite sparse. So, as these are sparse it is not at all

easy for a decoder to reconstruct because if I take a point somewhere over here, as shown

over here,  if  I take a point  over here which the encoder has never seen because the

encoder has never seen this point of this vector it is not possible for that decoder to

reconstruct what should be the corresponding object or what should the corresponding

image. So, the decoder in case of autoencoder what it needs is it needs a distinct code for

each image that is to be generated. So, that is the limitation of from the autoencoder.

(Refer Slide Time: 15:41)

So, as the autoencoder gives you discontinuous latent space so; that means, the decoder

cannot reconstruct from such a space from a point which is actually unexplored. And if

we sample from such points that decoder may give us some output it will give you some

output, but the output may not be realistic at all. So, what we try to do is our aim is that

we try to make this latent space continuous unlike in case of autoencoder, where the

latent space is not continuous it is false. 

So, in case of variational autoencoder, what we try to do is we try to make the latent

space continuous and though it is continuous, but still in this continuous latent space for



different  distributions  of  the  latent  vectors  for  different  classes  they  maintain  their

specific class identity or the class compactness. So, let us see what does it mean.

(Refer Slide Time: 16:44)

So, what we want is that unlike in case of autoencoder, where autoencoder gives you a

deterministic latent code for every input data in case of variational autoencoder we are

not interested in the deterministic code, but rather what we are interested in is to learn the

distribution over the latent code. So, here instead of giving a unique code for every input

data, we want to have the distribution of the latent codes for the class of input data that

we have. 

For example, it might be more intuitive to determine a range of smile rather than given

giving a specific absolute value to thus attribute smile, right. So, instead of deterministic

code if this distribution is we assume it to be a Gaussian distribution, then for every class

of input data or for every input data instead of getting a deterministic code, we would

like to have the mean and standard deviation for each component of the vector the latent

vector that you created.

And we can assume that every component is independent, so for a multi-dimensional

case what I get is covariance matrix, the covariance matrix will be a diagonal matrix. So,

this is what is expected out of our variational autoencoder.



(Refer Slide Time: 18:10)

So,  more  specifically  taking  this  particular  example  which  gives  you  the  difference

between an autoencoder and a variational autoencoder. So, here you find that for the first

example case, here it is quite apparent that this heat is not smiling, right. So, what the

autoencoder, the traditional autoencoder will give do is it will assign a value which is

negative indicating that it is not a smiling face. What the variational autoencoder will do

is instead of giving a specific value to this particular attribute smile, it will give you a

range of values or it will give you a distribution of the smile variable. 

Similarly, over here in this second example you find that the face is neither happy nor

very happy. So, you can give autoencoder gives a distinct value which is maybe which

may be around 0 to this particular attribute smile whereas, the variational autoencoder

gives a range of values with a mean 0 and the distribution of a standard and the variance

equal to 1. 

Over here, this kid is smiling a lot, so autoencoder gives a positive value, as a positive

value to this attribute smile whereas, variational autoencoder will give you a distribution

with mean value which is positive somewhere over here and it has a certain distribution.

So, this is what your variational autoencoder gives, generates as a latent variable it gives

you a distribution. And once you have a distribution, now I can sample a vector from that

distribution and that vector is fed to the decoder for reconstruction of the image.



(Refer Slide Time: 20:12)

So, now it is obvious that every input data is now represented as a for every input data

the autoencoder; the variational autoencoder gives a probability distribution. And we can

simply sample latent vector from that probability distribution and pass this latent vector

to the decoder for reconstruction of the image or the reconstruction of the object. So, this

is what is expected out of autoencoder, varational autoencoder.

(Refer Slide Time: 20:47)

And this  particular  diagram simply  tells  you that  the encoder  part  of  the variational

autoencoder gives you the distributions of different attributes. From this distribution you



can sample a vector; the vector is fed to the decoder and the decoder generates or the

decoder  reconstructs  your image,  and you find that your input  image and the output

means they are likely to be similar because they have to belong to the same class. 

(Refer Slide Time: 21:22)

So, when you have this distribution of the latent variables, I if I assume that it forms it

gives you a Gaussian distribution then I will have a mean and a standard deviation. So,

the mean of the vector, it  mean vector that controls where the encoding of the input

should  be  centered  around,  so  it  simply  gives  to  the  position  of  that  particular

distribution. And the standard deviation of your seed controls the spread of that particular

attribute or it tells you the area or how much from the mean the encoding of that attribute

should vary. 

And as the encodings are generated at random from inside a hyper sphere as we are

assuming that it  is a Gaussian distribution, what the decoder learns is not only that a

single point within that space for which and images to be generated. But the decoder

learns that around that point or within a neighborhood of that point there is a sample

belonging to that class and the decoder has to generate that sample. So, it is not from a

single  point  within  the  within  that  hyper  spherical  space,  but  maybe  within  a

neighborhood of  any given point  it  gets  latent  vector  and generates  and output  data

corresponding to those pair of vectors. 



(Refer Slide Time: 23:02)

So, now two things can happen. So, you find that we have two objectives; one is for

every given data input data we want to generate a distribution the distribution will have a

mean and a variance, and we want that the distributions should be very compact. So, that

we can have smooth interpolation between samples and the decoder can generate the

corresponding output.

So, for this possibly to make this smooth interpolation possible that distribution should

be quite compact.  However, the mean and the standard deviation that  the variational

autoencoder learns that may simply put that distributions of different classes for apart or

the mean vectors for different classes may be far apart  and if  it  so happens then the

interpolation might be difficult, right.



(Refer Slide Time: 24:14)

So, what we want is in order to make sure that the distributions become compact, they

are  not  far  apart  in  your  feature  space  in  the  latent  space  you  can  impose  a  prior

distribution. So, by asserting this prior distribution we want that for every category of the

objects for which we want the mean and standard deviation, so this distribution should be

very close to a prior distribution or in other words we can measure what is the pullback

library  divergence  or  KL  divergence  between  these  two  distributions  and  that  KL

divergence we will try to minimize. 

What is the KL divergence? The KL divergence between two probability distribution, it

simply measures how much is the divergence between those two distributions or we can

simply put that it measures that distance between two distributions. We will see a bit later

that that if what is the definition of the scale divergence and how we can compute the

Leibler divergences. 

So, if we minimize the scale divergence, and in most of the cases what we do is this prior

distribution  that  we impose  this  is  usually  zero  mean  unit  variance  or  unit  standard

deviation.  So,  by  minimizing  the  KL divergence  what  we  try  to  ensure  is  that  the

distributions  of the feature vectors the distributions  of the latent  vectors  for the data

belonging to different classes they closely resemble that of the target distribution for the

target distribution is a Gaussian distribution or normal distribution with zero mean and

unit variance, and as they, as a result they become very compact. 



(Refer Slide Time: 26:07)

So, the KL divergence loss by minimizing that it  encourages encoding from different

inputs to be clustered about the center of the latent space because we have specified the

target distribution to be zero mean and unit variance. Whereas, the other loss which is the

data loss that will try to maintain the clusters or the compactness of the cluster of the

vectors belonging to the same class of data.

(Refer Slide Time: 26:49)

So, we have to use both the KL divergence as well as the data loss together. If we use

only one of them, if we use only KL divergence then basically what we are trying to do is



for the data or the encoding for different classes we want all those encoded vectors to

have zero mean and unit variance. So, as a result what will happen is the structure that

data will lose the structural property of the different classes, and if it loses the structural

property  it  becomes  difficult  for  the  decoder  to  reconstruct  (Refer  Time:  27:31).

Whereas, if we use only the data loss then the compactness of the distributions that we

want in case of variational autoencoder or in case of generative model that may not be

maintained. 

(Refer Slide Time: 27:46)

So, if you use all  of them together, so this example simply says this diagram simply

shows that if I only use the KL loss or KL divergence loss, and I try to minimize that

then you find that the data belonging to all different classes, they are clustered together,

all of them are combined together. So, as a result you are losing the class identity or the

structural difference between different data sets. So, this is what is not desirable. 



(Refer Slide Time: 28:16)

This is the one, where if I put both the KL divergence as well as the reconstruction loss

and the data loss together, the KL divergence will try to make the distributions compact

and the reconstruction loss or the data loss will try to maintain the cross belongingness or

try to maintain the separability of the data belonging to different process. And that is

what has been shown over here, you find that this set of data belongs to one class, this set

of data belongs to one class, this set of data belongs to one class whereas, globally all

these distributions form a very compact set of clusters and that is what is required in case

of variational autoencoder.

(Refer Slide Time: 29:10)



This diagram shows puts all this different conditions side by side. So, on the leftmost

case  what  we  have  is  when  what  is  given  in  autoencoder  where  you  use  only  the

reconstruction  loss.  So,  by  minimizing  the  reconstruction  loss,  the  traditional

autoencoder gives you a set of latent vectors where the vectors belonging to different

category form different clusters, but the clusters are not compact in the latent space. 

The middle one shows if you use only the KL divergence loss in which case the data

belonging to different classes they are all  mixed together. Your cluster becomes very

compact,  but  at  the  same  time  you  lose  the  structural  information;  that  means,  the

different data sets, they do not have, they cannot maintain their own identity. So, as a

result this also becomes useless because given a sample from such a kind of distribution

to the decoder, the decoder does not  have any structural  information because all  the

structural information is lost. 

So, the data becomes useless to the decoder. So, what is required in our case is what is

given  on  the  right  most  one  that  you  try  to  minimize  the  KL divergence  and  the

reconstruction loss together. So, as a result you get a compact distribution whereas, in

every distribution the identity of the data belonging to different classes they are also

maintained. 

So, we will stop here today. Today, what we have seen is that what we can get from a

traditional autoencoder, what are the limitations of the traditional after encoder, why they

cannot be used as a generative model, because traditional autoencoder gives you a latent

vectors in a latent space or the latent space is very diverse, it is not compact and it is not

continuous. So, as it is not continuous, if I sample a vector from that such a latent space

and  give  it  to  the  decoder  the  decoder  does  not  know what  is  what  to  reconstruct

construct or what to create. 

So, in case of variational autoencoder, instead of generating a code for an input data the

variational autoencoder actually gives you a distribution of the codes or distribution of

the encoding. So, for reconstruction purpose what you do is your sample a latent vector

from that distribution and pass that latent vector to the decoder and using this  latent

vector the decoder can reconstruct a meaningful data or a meaningful image. So, we will

continue more with this variational autoencoder or generative model in our next lectures.

Thank you.


