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Hello welcome to the NPTEL online certification course on Deep Learning, for last few

classes we are talking about the applications of the convolutional neural networks which

we have done earlier. And, the particular application that we are discussing for previous

two class is the Semantic Segmentation problem, that is the semantic segmentation of the

input image input to your deep neural network.
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And for semantic segmentation we have discussed about two different architectures, one

of the architecture that you have discussed is a fully convolutional neural network and

the other architecture that we have discussed is the deconvolutional neural network.

So, what we have seen in case of fully convolutional neural network is that it is a short of

reinterpretation of a deep convolutional  neural network,  where deep CNN is actually

designed  for  classification  purpose;  that  means,  we want  to  classify  an  input  image

whether an input image contains a dog whether or whether an input image contains a car

or things like that.



So, for that purpose in the deep convolutional neural network, your initial few layers or

the  layers  in  the shallower  part  of  the  network which are  actually  the convolutional

layers.  There  we  have  the  different  convolutional  layers,  then  pooling  layers  which

comes one after another, but the final layers in the deep layers few one or more layers

which are actually the fully connected layers.

The fully connected layers as we have discussed earlier is something similar to the multi

layer perceptron and as the multilayer perceptron is able to classify the input objects or

input features. So, the convolutional neural network having fully connected layers at the

output side,  they are able  to classify the input objects  or input images to one of the

classes to which for which the neural network was trained so, that is what was your fully

convolutional neural network.

And  the  other  one  was  deconvolutional  neural  network,  in  deconvolutional  neural

network what we have seen is the architecture consists of a symmetrical deconvolution

part which is mirror symmetry of the convolutional network. Now, in both these cases

what you need is your output size have to be same as or the image that is generated at the

output or the map that is generated at the output has to be same as the input image size.

Now, in today’s lecture what we are going to discuss about is how to train those fully

convolutional neural networks or even the deconvolution neural network. So, that those

networks are capable of performing semantic segmentation tasks and for this we will talk

about two types of loss functions which are to be minimized during training of these

networks. One of the loss function that we will talk about is cross entropy loss and the

other loss function that we will talk about is dice loss.
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So, you see here that the two architectures that we have discussed in our previous classes

as we said that one is the deconvolution network. So, you see in deconvolution network

your  input  side  we  have  a  convolutional  neural  network,  where  what  does  this

convolution  neural  network  do  is  it  through  the  convolution  operation  and the  max

pooling operation it tries to find out the different features of the input image and the

features are extracted at different levels of abstraction. So, as you move inside the deeper

layer you have the features extracted at different levels of abstraction.

And,  then  in  the  convolutional  there  it  is  that  deconvolution  part  along  with  the

unpooling part. So, what it does is in case of convolutional part as well as the pooling

part the size of the feature maps goes on reducing because of the max pooling operation

which  is  usually  employed  and  in  every  layer  the  size  of  the  feature  map  goes  on

reducing one after another. So, as a result say somewhere deep inside the network your

size of the feature map that you obtain which is much less than the size of the input

image.

So, this deconvolutional network tries to undo this size deduction part. So, there we have

an unpooling operation followed by the deconvolution operation using the deconvolution

kernel. So, this unpooling and deconvolution gradually tries to bring back your size of

the output which is same as the size of the input image. So, if you compare these two

your size of the output that you get over here is same as the size of the input image.



So, this is what you get in case of deconvolution network where the increase of size or

the up sampling is done gradually whereas, in case of convolutional neural network or

fully convolutional network that we have shown before.
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Here the size expansion is done either in one step or in limited number of steps. So, with

this fully convolutional network the different modes of operation that you have seen is

one of them is FCN 32 where the size is made 32 times in 1 step, then we had seen FCN

16 where the size is increased in 2 steps and we also have seen FCN 8 where the size is

increased in 3 steps.

So, by increasing the number of hierarchical steps in which the sizes increased you find

that your output has become better and better it was a final output whereas, when the size

was increased 32 times in 1 step in that case your output of the segmentation output was

very coarse. But whatever we do whether I use deconvolutional network for performing

this task or I use a convolutional network for performing this task in both the cases I

need an output let us call it an output image whose size is same as the size of the input

image or the number of elements in the output array has to be same as the number of

pixels in the input image.

And in case of segmentation or semantic segmentation what is what I want is that each of

the  elements  in  the output  array which  corresponds to  the corresponding element  or

corresponding pixel in the input image this output element has to have a particular level



which is associated with the segment to which the input pixel should belong. And using

that  I  have  to  train  the  network  so,  that  once  the  network  is  trained  whether  it  is

deconvolution network or fully convolutional neural network once the network is trained

then  given an  input  image  the  network  should  be  able  to  perform the  segmentation

operation of the input image or in other words every pixel of the input image will be

classified to one of the categories of objects for which the network has been trained.

So, in case of convolutional neural network it was the classification of the input image

the image as a whole was classified to one of the known classes. In case of semantic

segmentation what we want is every pixel in the image has to be classified into one of

the known classes or this is nothing, but the classes of objects which are present within

the image. So, for this classification purpose what I need is; obviously, I need the ground

truth  images.  So,  how  the  ground  truth  image  looks  like  let  us  take  this  particular

example.
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So, here you find that on the left hand side we have original image and on the right hand

side this image that we have this is the segmented ground truth image. So, what this

segmentation has done is it has identified the pixels belonging to 3 different classes of

objects. So, 3 different classes which are considered is the pixels which belong to cars,

the pixels which belong to horse and the pixels which belong to a man. So, you find that

these are the pixels over here which belongs to cars as shown in this original image,



these are the pixels which belongs to horse and these are the pixels of course, enclosed

within this boundary having the same color. So, the all these pixels they belong to the

man.

So, what the semantic segmentation output should look like is that, say each of the pixels

belonging to belonging to the car all these pixels would we would like to take a value say

equal to 1. So, all the pixels belonging to car in the segmented output all these pixels

should be labelled with say value equal to 1. Similarly we may want that all the pixels or

all the elements which corresponds to a horse all these pixels should be labelled with a

value equal to 2. Similarly all the pixels which corresponds to man these pixels should be

labelled with a value equal to 3.

So, that I know that within my segment segmented output any pixels having level equal

to 3 means these pixels belong to the human. Similarly any pixel having a label equal to

1 this particular element belongs to a car in the original scene. So, this is my ground

truth, using this ground truth I have to trained the neural network. Now, we find that

when the convolutional neural network is used for the classification purpose, then for

training for any given input image for which the class is known the output vector that

you get is represented as a one hot vector. So, one what is this one hot vector.
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So, the one hot vector is suppose you have 3 different classes say dog, you have a class

cat and you have a class say car, say these are the 3 different classes of images 3 different



categories of images that we have. So, this convolutional neural network that we have

this neural network will have 3 outputs, one of the output corresponds to dog, the other

output corresponds to cat and the other output corresponds to car. So, when I feed an

input image which contains a dog then I expect all that my target output should be dog

output should be equal to 1 and the rest of the 2 outputs should be 0. 

Similarly when I feed an input image containing a car the car output should be equal to 1

and the other 2 output should be equal to 0. So, this is what is and one hot vector. So, for

all the training samples depending upon the category of the training sample or the level

of the training sample the output is and one hot vector or the target vector. Similarly

when I go for segmentation of the an image as the image has got a number of different

objects and I want that a pixel should be classified to one of those objects. 

So,  I  want  that  the  every  output  or  every  element  of  the  output  array  has  to  be

represented by a one hot vector depending upon what my ground truth says that whether

this element should belong to car or this element should belong to horse or this element

should belong to man. So, let us see that how this one hot vector is actually represented.
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So, this is how you represent one hot vector. So, what I have assumed is suppose I have

an input image which is of size 5 by 5. So, from the network I also want an output array

or say in this case the input image which is say of size 4 by 4. So, from the network I



want an output which will also be of size 4 by 4 and each element of this 4 by 4 array is

and one hot vector.

So, I am considering a case where my image is having just 3 categories of objects the

categories are car, horse, man and cat. So, if a pixel at location say 0 1 I have a car

present at that particular pixel location then my one hot vector should be that for car it

will be 1, for horse it will be 0, for man it will be 0, for cat it will be 0. So, that is what

has been shown over here. So, the corresponding pixel in my input image that if that

contains a car then I have to have this component of the one hot vector to be equal to 1,

this component 0, this component 0, this component is also 0.

Similarly, at this location at location say 0 1 2 to 1 at that corresponding pixel if a horse

is present or if that pixel is part of a horse then in the one hot vector the component

corresponding to hot should be equal to 1 and other components corresponding to car,

corresponding to man, corresponding into cat all these components it will have to be

equal to 0.

So,  this  one  hot  vector  that  every  element  represents  this  one  hot  vector  has  got  4

different components or it is a 4 dimensional vector, because I am assuming that I will

have these 4 categories of object present in my image. So, this is how you generate your

training samples that is I have an image and original image for which I have a ground

truth and that ground truth is represented in the form of an array of one hot vectors,

where the array size is same as your original input image size and every element in that

output array is one hot vector corresponding to different classes that are present in my

training samples or the training images.

So, this one hot vectors actually become my target vectors now what do I do using this

one hot vectors or how do I train the neural network using this one hot vectors, for doing

that what I have to do is I have to define a loss function. So, how do you define a loss

function, why do I need to define a loss function, for one when you feed one of the

training input image you know what is the array of one hot vectors that you would like to

have that is your ground truth. But, your network may give you something else, network

will also give you an array of vectors, but the contents of those vectors may be different

from the from what is your target vector.



So, you compute the difference and this difference actually gives you the loss function or

a  function  of  the  difference  gives  you  the  loss  function  and  then  using  the  back

propagation  learning  algorithm  following  the  gradient  descent  procedure  you  try  to

update the parameters of the network in such a way that the loss that has been computed

the loss goes on reducing or I want to have a set of parameters network parameters for

the loss for which the loss is minimum. So, I need to define a loss function.

(Refer Slide Time: 18:29)

So, how do I define that loss function? So, here is an example. So, you find that for a

particular pixel location say my one hot vector which is the target is and suppose that

particular corresponding pixel in the input image is in the region occupied by a horse. So,

my one hot vector is 0 as shown over here, the one hot vector is 0 1 0 0, but maybe while

training  the  neural  network  whether  it  is  the  fully  convolutional  network  or  a

deconvolution network whatever it is.

The network gives me a vector at the corresponding location which is 0.2, 0.3, 0.4 and

0.1 I will tell you just after explaining this that how do you get this 0.2 0.3 0.4 and 0.1

and these are the figures which actually tells you that what is the probability that this

pixel  belongs  to  car.  So,  that  probability  is  0.2  this  pixel  belongs  to  a  horse,  with

probability 0.3 the pixel belongs to man, with point with probability 0.4 and the pixel

belongs to cat with point probability 0.1. So, this is the actual vector output which your



network is giving and this is what is my target vector and this is the actual vector that I

get.

So, once I have my target vector and the actual vector which is given by the network

what I can do is, now I can find out what is the difference between these two or what is

the error that has been encountered. So, one of the ways in which I can compute the error

is just find out the vector difference and then you take the square of that square of the

mode of that vector difference sum it over all the elements within the output array. So,

that is what is your sum of squared error loss function which we have talked about earlier

and we have also seen that, what is the limitation of that sum of squared error being

taken as a loss function.

So, we have discussed earlier that instead of using the sum of squared error as your loss

function if you use a cross entropy loss that gives you much more advantage in terms of

convergence of your training algorithm. So, here if I compute the cross entropy; so, if I

take a pixel location x, y suppose my target value at location x, y is p x, y and the actual

value that you get is q i x, y. Then the cross entropy is defined as minus log of p i x, y, q i

x, y take the summation over all x, y sorry here it will not be x y take the summation

over all I because, we are representing each of the components of this one hot vector as

the ith component. 

So, if I take p i x, y and x, y represents what is your pixel location. So, this location of

the pixel is actually your x, y. So, you take p i x, y then log of q i x, y, where p i x, y is

the target value value of the target vector at the in the ith plane or ith object and q i is the

actual value that you are getting. So, over here your p 1 x y is equal to 0, here p 2 x y is

equal to 1, p 3 x y is equal to 0 and p 4 x y is equal to 0. Similarly here I have q 1 x y

which is 0.2, q 2 x, y which is 0.3, q 3 x y which is 0; 4 and q 4 x y which is 0.1.

So, using these two the definition says that the cross entropy is simply given by p i x y

into q i x y where you take the summation p i x y into log of q i x y and you take the

summation over all i. So, that is what is giving you a pixel cross entropy or an element

cross entropy and I  get  the overall  cross  entropy, if  I  take  the average of  this  cross

entropy over all the elements that I have.

So, what I will do is, I will sum it up over all the elements that I have within this output

array if I have total N number of elements. So, this is where I can put that this is over i



and this is over x y and divide it by 1 over N, where N is the total number of elements.

So, this is the average cross entropy loss or average pixel wise cross entropy loss that I

get and my training algorithm or the gradient descent approach should be that following

back propagation gradient descent back propagation you try to update the parameters of

your network such that this pixel wise cross entropy loss will be minimized.

So, this is one of the loss functions that can be used for training your neural network

whether it is a fully convolutional neural network or it is a deconvolution neural network,

this training algorithm applies equally. So, this is one of the loss functions that can be

used for training your FCN fully convolution neural network or the deconvolution neural

network which will be used for the semantic segmentation purpose. Now, there is another

loss function that can also be used for the training purpose. 
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That particular loss function before coming to that loss function let us say how do you

actually get your segmentation. So, for this semantic segmentation once your network is

trained you get an output array where the array size is same as your input image size and

every element of the array is a vector where every component of that vector actually tells

you that what is the probability that the corresponding input pixel belongs to one of the

classes for which the network has been trained.

Say for example, as given over here, if you consider this particular pixel at the center of

this array this is a 5 by 5 array assuming that your input image is also of size 5 by 5 and



this is the center pixel in that image there is a center pixel in that image. So, it says that

the probability that the center pixel belongs to car is 0.05, the probability that the center

pixel belongs to man is 0.25, the probability that the center pixel belongs to horse is 0.6

and the probability  that the center pixel belongs to cat is 0.1. And then for semantic

segmentation when I want to get the segmented output what I need to do is, I need to

give a level to this center element in my output array.

And,  here you find  that  because the  probability  of  occurrence  to  horse is  maximum

which is 0.6 and assuming that this horse has an index 3 in my one hot vector in the

vector representation of the output for that particular element. Then to this corresponding

location I will assign a label 3, similarly in the other case say this pixel the probability of

occurrence to man is maximum and assuming that man has an index 2 in that one hot

vector representation of this output then at this location the level assigned will be 2.

So, this final output array or the segmented output array is an array of integers where a

number at any location tells you to which of the classes that particular pixel has been

classified and that is how you get the semantic segmented output. So, if I have all these

pixels which belong to say horse then all these elements will get a value equal to 3. So,

that is how you get a semantic segmentation.

Now, as I said that how do you get this probability estimate, you know that every node in

the  neural  network  computes  an  activation  value  right.  So,  at  the  output  of  these

networks when I have a one hot vector of in this case of dimension 4 then what I can do

is, I can perform soft max operation over those 4 elements. And, if you perform a soft

max  operation  assuming  that  I  have  a  soft  max  layer  which  performs  a  soft  max

operation over those 4 components.

Then all these 4 components will be normalized to have a value between 0 and 1 and that

is  what  is  being  done  here.  And,  this  value  that  you  get  tells  you  gives  you  some

indication of what is the probability to which probability that this pixel belongs to the

corresponding class corresponding to it is index in that one hot vector ok.

So, let me stop here today, in my next class I will talk about the other loss function which

is  dice  loss  that  can  be  used  for  training  the  neural  network  performing  semantic

segmentation. And, I will also try to talk about another application which is denoising of

input image using the same deconvolutional neural network.



Thank you.


