
Deep Learning
Prof. Prabir Kumar Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 55
Semantic Segmentation - III

Hello welcome to the NPTEL online certification course on Deep Learning, for last few

classes we are talking about the applications of the convolutional neural networks which

we have done earlier. And, the particular application that we are discussing for previous

two class is the Semantic Segmentation problem, that is the semantic segmentation of the

input image input to your deep neural network.

(Refer Slide Time: 00:57)

And for semantic segmentation we have discussed about two different architectures, one

of the architecture that you have discussed is a fully convolutional neural network and

the other architecture that we have discussed is the deconvolutional neural network.

So, what we have seen in case of fully convolutional neural network is that it is a short of

reinterpretation of a deep convolutional neural network, where deep CNN is actually

designed for classification purpose; that means, we want to classify an input image

whether an input image contains a dog whether or whether an input image contains a car

or things like that.

So, for that purpose in the deep convolutional neural network, your initial few layers or

the layers in the shallower part of the network which are actually the convolutional

layers. There we have the different convolutional layers, then pooling layers which

comes one after another, but the final layers in the deep layers few one or more layers

which are actually the fully connected layers.

The fully connected layers as we have discussed earlier is something similar to the multi

layer perceptron and as the multilayer perceptron is able to classify the input objects or

input features. So, the convolutional neural network having fully connected layers at the

output side, they are able to classify the input objects or input images to one of the

classes to which for which the neural network was trained so, that is what was your fully

convolutional neural network.

And the other one was deconvolutional neural network, in deconvolutional neural

network what we have seen is the architecture consists of a symmetrical deconvolution

part which is mirror symmetry of the convolutional network. Now, in both these cases

what you need is your output size have to be same as or the image that is generated at the

output or the map that is generated at the output has to be same as the input image size.

Now, in today’s lecture what we are going to discuss about is how to train those fully

convolutional neural networks or even the deconvolution neural network. So, that those

networks are capable of performing semantic segmentation tasks and for this we will talk

about two types of loss functions which are to be minimized during training of these

networks. One of the loss function that we will talk about is cross entropy loss and the

other loss function that we will talk about is dice loss.

(Refer Slide Time: 04:17)

So, you see here that the two architectures that we have discussed in our previous classes

as we said that one is the deconvolution network. So, you see in deconvolution network

your input side we have a convolutional neural network, where what does this

convolution neural network do is it through the convolution operation and the max

pooling operation it tries to find out the different features of the input image and the

features are extracted at different levels of abstraction. So, as you move inside the deeper

layer you have the features extracted at different levels of abstraction.

And, then in the convolutional there it is that deconvolution part along with the

unpooling part. So, what it does is in case of convolutional part as well as the pooling

part the size of the feature maps goes on reducing because of the max pooling operation

which is usually employed and in every layer the size of the feature map goes on

reducing one after another. So, as a result say somewhere deep inside the network your

size of the feature map that you obtain which is much less than the size of the input

image.

So, this deconvolutional network tries to undo this size deduction part. So, there we have

an unpooling operation followed by the deconvolution operation using the deconvolution

kernel. So, this unpooling and deconvolution gradually tries to bring back your size of

the output which is same as the size of the input image. So, if you compare these two

your size of the output that you get over here is same as the size of the input image.

So, this is what you get in case of deconvolution network where the increase of size or

the up sampling is done gradually whereas, in case of convolutional neural network or

fully convolutional network that we have shown before.

(Refer Slide Time: 06:29)

Here the size expansion is done either in one step or in limited number of steps. So, with

this fully convolutional network the different modes of operation that you have seen is

one of them is FCN 32 where the size is made 32 times in 1 step, then we had seen FCN

16 where the size is increased in 2 steps and we also have seen FCN 8 where the size is

increased in 3 steps.

So, by increasing the number of hierarchical steps in which the sizes increased you find

that your output has become better and better it was a final output whereas, when the size

was increased 32 times in 1 step in that case your output of the segmentation output was

very coarse. But whatever we do whether I use deconvolutional network for performing

this task or I use a convolutional network for performing this task in both the cases I

need an output let us call it an output image whose size is same as the size of the input

image or the number of elements in the output array has to be same as the number of

pixels in the input image.

And in case of segmentation or semantic segmentation what is what I want is that each of

the elements in the output array which corresponds to the corresponding element or

corresponding pixel in the input image this output element has to have a particular level

which is associated with the segment to which the input pixel should belong. And using

that I have to train the network so, that once the network is trained whether it is

deconvolution network or fully convolutional neural network once the network is trained

then given an input image the network should be able to perform the segmentation

operation of the input image or in other words every pixel of the input image will be

classified to one of the categories of objects for which the network has been trained.

So, in case of convolutional neural network it was the classification of the input image

the image as a whole was classified to one of the known classes. In case of semantic

segmentation what we want is every pixel in the image has to be classified into one of

the known classes or this is nothing, but the classes of objects which are present within

the image. So, for this classification purpose what I need is; obviously, I need the ground

truth images. So, how the ground truth image looks like let us take this particular

example.

(Refer Slide Time: 09:27)

So, here you find that on the left hand side we have original image and on the right hand

side this image that we have this is the segmented ground truth image. So, what this

segmentation has done is it has identified the pixels belonging to 3 different classes of

objects. So, 3 different classes which are considered is the pixels which belong to cars,

the pixels which belong to horse and the pixels which belong to a man. So, you find that

these are the pixels over here which belongs to cars as shown in this original image,

these are the pixels which belongs to horse and these are the pixels of course, enclosed

within this boundary having the same color. So, the all these pixels they belong to the

man.

So, what the semantic segmentation output should look like is that, say each of the pixels

belonging to belonging to the car all these pixels would we would like to take a value say

equal to 1. So, all the pixels belonging to car in the segmented output all these pixels

should be labelled with say value equal to 1. Similarly we may want that all the pixels or

all the elements which corresponds to a horse all these pixels should be labelled with a

value equal to 2. Similarly all the pixels which corresponds to man these pixels should be

labelled with a value equal to 3.

So, that I know that within my segment segmented output any pixels having level equal

to 3 means these pixels belong to the human. Similarly any pixel having a label equal to

1 this particular element belongs to a car in the original scene. So, this is my ground

truth, using this ground truth I have to trained the neural network. Now, we find that

when the convolutional neural network is used for the classification purpose, then for

training for any given input image for which the class is known the output vector that

you get is represented as a one hot vector. So, one what is this one hot vector.

(Refer Slide Time: 12:21)

So, the one hot vector is suppose you have 3 different classes say dog, you have a class

cat and you have a class say car, say these are the 3 different classes of images 3 different

categories of images that we have. So, this convolutional neural network that we have

this neural network will have 3 outputs, one of the output corresponds to dog, the other

output corresponds to cat and the other output corresponds to car. So, when I feed an

input image which contains a dog then I expect all that my target output should be dog

output should be equal to 1 and the rest of the 2 outputs should be 0.

Similarly when I feed an input image containing a car the car output should be equal to 1

and the other 2 output should be equal to 0. So, this is what is and one hot vector. So, for

all the training samples depending upon the category of the training sample or the level

of the training sample the output is and one hot vector or the target vector. Similarly

when I go for segmentation of the an image as the image has got a number of different

objects and I want that a pixel should be classified to one of those objects.

So, I want that the every output or every element of the output array has to be

represented by a one hot vector depending upon what my ground truth says that whether

this element should belong to car or this element should belong to horse or this element

should belong to man. So, let us see that how this one hot vector is actually represented.

(Refer Slide Time: 14:25)

So, this is how you represent one hot vector. So, what I have assumed is suppose I have

an input image which is of size 5 by 5. So, from the network I also want an output array

or say in this case the input image which is say of size 4 by 4. So, from the network I

want an output which will also be of size 4 by 4 and each element of this 4 by 4 array is

and one hot vector.

So, I am considering a case where my image is having just 3 categories of objects the

categories are car, horse, man and cat. So, if a pixel at location say 0 1 I have a car

present at that particular pixel location then my one hot vector should be that for car it

will be 1, for horse it will be 0, for man it will be 0, for cat it will be 0. So, that is what

has been shown over here. So, the corresponding pixel in my input image that if that

contains a car then I have to have this component of the one hot vector to be equal to 1,

this component 0, this component 0, this component is also 0.

Similarly, at this location at location say 0 1 2 to 1 at that corresponding pixel if a horse

is present or if that pixel is part of a horse then in the one hot vector the component

corresponding to hot should be equal to 1 and other components corresponding to car,

corresponding to man, corresponding into cat all these components it will have to be

equal to 0.

So, this one hot vector that every element represents this one hot vector has got 4

different components or it is a 4 dimensional vector, because I am assuming that I will

have these 4 categories of object present in my image. So, this is how you generate your

training samples that is I have an image and original image for which I have a ground

truth and that ground truth is represented in the form of an array of one hot vectors,

where the array size is same as your original input image size and every element in that

output array is one hot vector corresponding to different classes that are present in my

training samples or the training images.

So, this one hot vectors actually become my target vectors now what do I do using this

one hot vectors or how do I train the neural network using this one hot vectors, for doing

that what I have to do is I have to define a loss function. So, how do you define a loss

function, why do I need to define a loss function, for one when you feed one of the

training input image you know what is the array of one hot vectors that you would like to

have that is your ground truth. But, your network may give you something else, network

will also give you an array of vectors, but the contents of those vectors may be different

from the from what is your target vector.

So, you compute the difference and this difference actually gives you the loss function or

a function of the difference gives you the loss function and then using the back

propagation learning algorithm following the gradient descent procedure you try to

update the parameters of the network in such a way that the loss that has been computed

the loss goes on reducing or I want to have a set of parameters network parameters for

the loss for which the loss is minimum. So, I need to define a loss function.

(Refer Slide Time: 18:29)

So, how do I define that loss function? So, here is an example. So, you find that for a

particular pixel location say my one hot vector which is the target is and suppose that

particular corresponding pixel in the input image is in the region occupied by a horse. So,

my one hot vector is 0 as shown over here, the one hot vector is 0 1 0 0, but maybe while

training the neural network whether it is the fully convolutional network or a

deconvolution network whatever it is.

The network gives me a vector at the corresponding location which is 0.2, 0.3, 0.4 and

0.1 I will tell you just after explaining this that how do you get this 0.2 0.3 0.4 and 0.1

and these are the figures which actually tells you that what is the probability that this

pixel belongs to car. So, that probability is 0.2 this pixel belongs to a horse, with

probability 0.3 the pixel belongs to man, with point with probability 0.4 and the pixel

belongs to cat with point probability 0.1. So, this is the actual vector output which your

network is giving and this is what is my target vector and this is the actual vector that I

get.

So, once I have my target vector and the actual vector which is given by the network

what I can do is, now I can find out what is the difference between these two or what is

the error that has been encountered. So, one of the ways in which I can compute the error

is just find out the vector difference and then you take the square of that square of the

mode of that vector difference sum it over all the elements within the output array. So,

that is what is your sum of squared error loss function which we have talked about earlier

and we have also seen that, what is the limitation of that sum of squared error being

taken as a loss function.

So, we have discussed earlier that instead of using the sum of squared error as your loss

function if you use a cross entropy loss that gives you much more advantage in terms of

convergence of your training algorithm. So, here if I compute the cross entropy; so, if I

take a pixel location x, y suppose my target value at location x, y is p x, y and the actual

value that you get is q i x, y. Then the cross entropy is defined as minus log of p i x, y, q i

x, y take the summation over all x, y sorry here it will not be x y take the summation

over all I because, we are representing each of the components of this one hot vector as

the ith component.

So, if I take p i x, y and x, y represents what is your pixel location. So, this location of

the pixel is actually your x, y. So, you take p i x, y then log of q i x, y, where p i x, y is

the target value value of the target vector at the in the ith plane or ith object and q i is the

actual value that you are getting. So, over here your p 1 x y is equal to 0, here p 2 x y is

equal to 1, p 3 x y is equal to 0 and p 4 x y is equal to 0. Similarly here I have q 1 x y

which is 0.2, q 2 x, y which is 0.3, q 3 x y which is 0; 4 and q 4 x y which is 0.1.

So, using these two the definition says that the cross entropy is simply given by p i x y

into q i x y where you take the summation p i x y into log of q i x y and you take the

summation over all i. So, that is what is giving you a pixel cross entropy or an element

cross entropy and I get the overall cross entropy, if I take the average of this cross

entropy over all the elements that I have.

So, what I will do is, I will sum it up over all the elements that I have within this output

array if I have total N number of elements. So, this is where I can put that this is over i

and this is over x y and divide it by 1 over N, where N is the total number of elements.

So, this is the average cross entropy loss or average pixel wise cross entropy loss that I

get and my training algorithm or the gradient descent approach should be that following

back propagation gradient descent back propagation you try to update the parameters of

your network such that this pixel wise cross entropy loss will be minimized.

So, this is one of the loss functions that can be used for training your neural network

whether it is a fully convolutional neural network or it is a deconvolution neural network,

this training algorithm applies equally. So, this is one of the loss functions that can be

used for training your FCN fully convolution neural network or the deconvolution neural

network which will be used for the semantic segmentation purpose. Now, there is another

loss function that can also be used for the training purpose.

(Refer Slide Time: 25:01)

That particular loss function before coming to that loss function let us say how do you

actually get your segmentation. So, for this semantic segmentation once your network is

trained you get an output array where the array size is same as your input image size and

every element of the array is a vector where every component of that vector actually tells

you that what is the probability that the corresponding input pixel belongs to one of the

classes for which the network has been trained.

Say for example, as given over here, if you consider this particular pixel at the center of

this array this is a 5 by 5 array assuming that your input image is also of size 5 by 5 and

this is the center pixel in that image there is a center pixel in that image. So, it says that

the probability that the center pixel belongs to car is 0.05, the probability that the center

pixel belongs to man is 0.25, the probability that the center pixel belongs to horse is 0.6

and the probability that the center pixel belongs to cat is 0.1. And then for semantic

segmentation when I want to get the segmented output what I need to do is, I need to

give a level to this center element in my output array.

And, here you find that because the probability of occurrence to horse is maximum

which is 0.6 and assuming that this horse has an index 3 in my one hot vector in the

vector representation of the output for that particular element. Then to this corresponding

location I will assign a label 3, similarly in the other case say this pixel the probability of

occurrence to man is maximum and assuming that man has an index 2 in that one hot

vector representation of this output then at this location the level assigned will be 2.

So, this final output array or the segmented output array is an array of integers where a

number at any location tells you to which of the classes that particular pixel has been

classified and that is how you get the semantic segmented output. So, if I have all these

pixels which belong to say horse then all these elements will get a value equal to 3. So,

that is how you get a semantic segmentation.

Now, as I said that how do you get this probability estimate, you know that every node in

the neural network computes an activation value right. So, at the output of these

networks when I have a one hot vector of in this case of dimension 4 then what I can do

is, I can perform soft max operation over those 4 elements. And, if you perform a soft

max operation assuming that I have a soft max layer which performs a soft max

operation over those 4 components.

Then all these 4 components will be normalized to have a value between 0 and 1 and that

is what is being done here. And, this value that you get tells you gives you some

indication of what is the probability to which probability that this pixel belongs to the

corresponding class corresponding to it is index in that one hot vector ok.

So, let me stop here today, in my next class I will talk about the other loss function which

is dice loss that can be used for training the neural network performing semantic

segmentation. And, I will also try to talk about another application which is denoising of

input image using the same deconvolutional neural network.

Thank you.

