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Hello, welcome back to the NPTEL online certification course on Deep Learning. So, we

are discussing about the problem of Semantic Segmentation of images using the deep

learning approach. In our previous class, we have talked about fully convolutional neural

network used for semantic segmentation. 

(Refer Slide Time: 00:54)

In today’s lecture, we will talk about another kind of network which is deconvolutional

neural network for the same semantic segmentation purpose. Now, before we go to the

deconvolutional  network  let  us  quickly  try  to  summarize  what  we  had  seen  in  our

previous  class,  and  we  will  also  try  to  see  what  is  the  drawback  of  this  fully

convolutional neural network which the proposers of the deconvolutional neural network

have tried to address.



(Refer Slide Time: 01:28)

So, in a fully convolutional neural network as we have seen in our previous lecture, the

fully  convolutional  neural  network  consists  of  seven  convolution  layers,  and  it  also

consists of five max pool layers. So, after the first pooling layer, if my input image is of

size M by N, after the first pooling layer the input image or the size or the feature map

becomes half of the original input size that is it becomes M by 2 by N by 2. 

After the second pooling layer, the size of the feature map becomes one-fourth of the

original  image size.  After  convolution  4,  it  becomes,  after  pooling  3 the  size of  the

feature map becomes one-eighth of the original image size. After pooling 4, it becomes 1

upon 16th  of  the  original  image  size;  after  pooling  5,  it  becomes  1  upon 32 of  the

original image size.

And we have also seen that instead of considering the output layer of a convolutional

neural network meant for classification purpose which is actually a fully connected layer.

The proposers of  this  approach have considered that  output  layer  as  a convolutional

layer. So, as a result, at the output of that convolutional layer what you get is a heat map

of your original input image. And to convert that into a semantically segmented output,

this output has to be blown up to the size of your original image input, that means, the

feature map that you get at the output of pooling layer or at the output of convolutional

layer 7 that has to be blown up by a factor of 32. So, that every pixel in that feature map



or in that label map can be classified belonging to one of the classes of objects which are

present within your input image.

(Refer Slide Time: 03:57)

So, in order to do this, the proposers what they have suggested is that over here you

directly take the output of the convolution layer 5, so here it was actually 1 upon 32 of

the original image size. Here it was 1 upon 16 of the original image size, here it was 1

upon 8 of the original image size. 

So, one of the approach is that you directly up sample the output of the convolution layer

7 which is the size of the output of pooling layer 5 by a factor of 32. So, this is 32 x

upsampled; obviously, this is a sparse map. So, to densify it what you have to do is you

have  to  pass  it  through  the  deconvolutional  filters,  where  the  parameters  of  the

deconvolution filters are to be learned during training of the neural network using back

propagation learning algorithm. But still as it is being done in a single step upsampling

by a factor of 32 the output becomes very very coarse or the result becomes very very

coarse.

The next approach that they have shown is that output of pooling layer 5, you upsampled

by a factor of 2. So, here you are as you are up sampling by a factor of 2, this upsampled

output now becomes 1 upon 16th of the original input inner size. And this upsampled

version from the output of pooling layer 4, you add with the output of this upsampled



version from the output of pooling layer 5, you add with the output of the pooling layer

4.

So, here you see that what has been used is the concept of skip connection that we have

discussed before about the skip connection network or residual network. So, the same

concept has been used here that a number of connections or the number of layers have

been skipped, so that the output of pooling layer 4 or the subsequent convolution layers

that is directly added by passing the input intermediate layers to this up sampling layer.

And this is also 1 by 16. So, these two are added together to give you and then it is this

output is upsampled 16 times, so that this output is same as the size of this output is same

as your original input image. And this is output is what is known as FCN 16. 

For further refinement what the authors have suggested is that this output that you are

getting over here which is sum of output of pooling layer 4, and the output of pooling

layer 5 upsampled by a factor of 2, these two you upsampled by a factor of 2 again. So,

here what you are getting is a feature map which is of size 1 by 8 of the original input

image and that you add with the output of the pooling layer 3. Again you find that this is

a  concept  of skip connection,  these two are added together  and this  output  and then

finally, upsampled by a factor of 8. 

So, it is quite obvious that the output or the semantic segmentation that you get using this

FCN-8s will be finer than the semantic segmentation of FCN-16s. And of course, the

semantic segmentation output of the FCN-32s will be the worst among all these three.
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And that is what was also evident from the result that was reported in that particular

paper. So, here you find that this is the ground truth. This is the output of FCN-32, this is

the output of FCN-16 and this is the output of FCN-8. So, it is quite obvious that output

of FCN-8 is very close to actual ground truth, whereas, output of FCN-13 is far away

from the ground truth. And output of FCN 16 is somewhere in between. 

So, this is what was deported in a paper by Jonathan Long at et. al in CVPR 2015. And

they named it as Fully Convolutional Network, because they had interpreted the fully

connected  output  layer  as  a  convolutional  layer  and  the  inter  walk  then  based  on

upsampling and deconvolution operations of the output of that final convolutional layer. 

Subsequently, in the same year in ICCV 2015 another paper was published which was

the concept of deconvolution network. So, now we will try to discuss about what is that

deconvolution network and how it is used for semantic segmentation of input images.
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Now, one of the problem that was pointed out by the authors of this deconvolution layer

which  is  an ICCV 2015 pair  paper  they had are good that  in  case  of  this  FCN the

receptive field of the network is fixed. And because this receptive field is fixed, if the

receptive field is very high or the receptive field is very low compared to the size of the

objects which are present within the input image, then it is possible that the semantic

segmented output that you get many of the objects might be missed. If the receptive field

is very large compared to the object size or the objects may be or the segments may be

broken into sub segments, if it is otherwise.

So,  that  is  what  has  been shown within  this  diagram,  they  demonstrated  within  this

diagram that here we have a bus the semantically segmented output the ground truth

output should be something like this, whereas, the output of the FCN network was shown

of this form. Whereas, this is the output of in front of a store here from the ground truth

shows something like this there are a number of persons, but the actual output which was

produced by the FCN the fully connected network was something like this, where many

of the persons have been missed. They could not be segmented by that FCN network.

And this problem they have attributed to the fixed size of the receptive field in case of

fully convolutional neural network.

So, what these authors have suggested is that instead of having or instead of trying to up

sample the output of the convolutional layers in just one step or two steps like FCN 16,



FCN 8 or FCN 32. So, they have given three different steps. What these authors have

suggested  that  the  output  can  be  upsampled  gradually.  The  way  it  has  been  down

sampled during the convolution operation; in the deconvolution operation, it can be up

sample following the same number of steps.

(Refer Slide Time: 12:14)

So, as a result  of that they have come up with a deconvolution network architecture

which is something like this. So, you find that in this deconvolution network architecture

we have this deconvolutional network part which structurally is the mirror image of the

convolution network part. So, in case of deconvolution portion, the number of unpooling

layers, the number of deconvolution layers is just is having a mirror symmetry of the

number of unpooling layers and the number of convolution layers that you have in the

convolutional part.

So, I can say that if I just simply split over here this part is just mirror image of this

portion  or  the  deconvolution  network  portion  is  mirror  image  of  the  convolutional

network  portion.  And here  every max pooling layer  has  its  corresponding unpooling

layer. Every convolutional layer has its corresponding or peer deconvolution layer. 

So, the advantage of this network is that as while doing the convolution, the size of the

feature maps are being gradually reduced. So, first it becomes 1 by 2 after the first max

pooling operation. After second max pooling operation, maybe it becomes 1 by 4, then it



becomes 1 by 8, then it becomes 1 by 16, then it becomes 1 by 32. So, this is half, this is

becoming 1 by 4, 1 by 8, 1 by 16 and 1 by 32. 

So, just conversely when you go for unpooling, after first unpooling it becomes 1 by 16;

after second unpooling it becomes 1 by 8. After third unpooling, it becomes 1 by 4. After

this unpooling it becomes 1 by 2 and after this final unpooling, your input image size

sorry. So, after final unpooling over here your feature map size or the label map size

become same as the size of the original image. 

So, here it is being a gradual change or gradual up sampling or up scaling the problem

which was first in convolutional neural network, fully convolutional neural network of

having  fixed  receptive  field  size  that  is  avoided  using  the  deconvolutional  neural

network.

Now, in  order  to  make your  convolutional  part  and the  deconvolutional  part  exactly

matching  in  terms  of  max  pooling  and  unpooling,  the  authors  have  introduced  the

concept of switch variable. The purpose of the switch variable is that say when you are

going  for  max  pooling  operation  within  a  max  pool  window,  you  are  picking  the

activation which is having the maximum value,  and that a location of that maximum

activation may be anywhere within this max pool window. And in subsequent layers the

location information of this maximum activation value is lost, it is not being detained

anywhere.

Whereas,  we  want  that  when  you  are  doing  exactly  the  reverse  operation  during

unpooling, the values which had to be replaced in the unpooled array those values should

be placed in the same location and then you perform the deconvolution operation. So,

that  your max pooling operation,  unpooling operation,  the convolution operation,  the

deconvolution operation they become exactly matching. 

So, in order to do that what we need is whenever you perform a max pooling operation,

in addition to the max pooled value, we also need to retain the location from where that

max pooled value was taken. And this location is retained is stored in a variable which is

which they have called as a switch variable. So, for every max pool layer, I had to have a

set of switch variables and these switch variables are used when you go for the unpooling

operation.
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So, the kind of variables is somewhere over here, here it shows that what you do in case

of a pooling operation and a convolution operation. So, in case of convolution operation,

you take the values from the receptive field or the activation values from the receptive

field. You perform the convolution operation over this using the convolution kernel and

you get the activation value. 

In the deconvolution operation, it is exactly the reverse, you take an activation value of a

particular layer and then spread it  to its neighborhood to the corresponding receptive

field using the coefficients or the parameters of the deconvolution kernel. In case of max

pooling operation, the maximum value is pooled and in the switch variable you retain the

location from where this value has been pooled.

So, when you go for unpooling, you get the value which has to be or a layer feature map

that has to be unpooled or it has to be upsampled. But when you do this up sampling this

value which is to be replaced we want that this value has to be replaced in the same

location from which the maximum activation was taken. And for doing that you make

use of this particular variable switch variable, which has stored the location from which

this max pooled value was taken. And this information is used for replacing this value

into the corresponding location when you go for unpooling in the upsampled array.

And then you perform the convolution over operation over this. And, the deconvolution

that we have shown earlier  that when you perform deconvolution over an upsampled



array using stride 1, your array of the map or array of the feature map or array of the

label map in this particular case because when you are going for deconvolution let us call

it label map. Because finally, what we want is in the segmented output, we want the level

of every pixel;  it  is not the feature that every pixel has to be leveled to belong to a

particular class. So, if it belongs to class 1, the level has to be 1; it belongs to class of

objects 2, then the level as we 2. So, let us call this as label map instead of feature map.

So,  this  upsampled  array  when  it  is  deconvoled  with  the  deconvolution  network;

deconvolution kernel then the size of the label map increases. And as has been shown

over here that the size is gradually increased, and finally what you get is your final label

map size over here which will be same as the size of the input image. 

And using this concept the authors have shown that,  the quality of the output or the

quality of the semantic segmentation that you obtain is much better than what you get in

case of fully connected network. Now, before I come to the output, let me just elaborate

on how this switch variable actually works, so that I can use the information present in

the switch variable to replace the values in my upsampled label map.

(Refer Slide Time: 20:53)

So, for doing that let us assume that we have say an array of size 8 by 8 of feature maps

or say let us have an array of size 4 by 4, 8 by 8 will be too large. And let me assume that

the feature values in this 8 by 8 map are something like this say I have 3 9 5 2 6 2 1 8 say

12 anything 3 2 5 9 7 6 2. So, after doing this, if I assume that I perform a max pooling



function with a max pooling window of 2 and with size 2. In that case, you will find that

within this max pooling window of 2 by 2, the maximum value is 9. So, my max pooled

output over here will be something like this, here I get 9. Similarly, over here, it is 8;

over here, it is 12 and in this max pooling window, it is 9.

Now, the locations from which this max pooled value was taken is, in this window it is

this location, in this window it is this location, here it is this location and here it is this

location. So, I can form a switch variable or a switch array, the switch array will be of

this form. Again, this is a 4 by 4 array. I will make this value to be 1 from where the

value has been pooled. I will also put this value to be 1, because from here the max value

has been pooled, this value to be 1 and this value to be 1.

So,  this  indicates  wherever  I  have  value  1,  those  are  the  locations  from which  the

maximum activation values have been pooled. And the remaining locations in these two

arrays  keep them equal  to  0.  And during unpooling  operation,  suppose after  passing

through  a  number  of  convolution  layers  and  the  deconvolution  layers  at  the

corresponding deconvolution side, my mapped are the label variables, the label values

have been something like this 5 7 9 12 which is of this form. 

And when I go for unpooling of this, again I have to make an 8 by 8 window sorry 4 by 4

window. So, the way I can make this 4 by 4 window is something like this. I know my

pooling window size was 2 by 2 with size 2.  So,  this  is  my 4 by 4 window or the

unpooled window, and in this unpooled window, I have to keep these values.

So, initially what I can do is because this value is 5, and I know this 5 has been pooled

from this particular pooling window. So, I will keep all these values to be equal to 5.

Similarly, here I will make all these values to be equal to 9. Here I will make all these

values to be equal to 7, and here I will make all these values to be equal to 12. And then

what  I  do  is  I  multiply  this  output  with  the  switch  variable.  And  once  you do this

multiplication, you find that only at the locations where you have value equal to 1, those

locations will be retained and all other locations where the value is 0, those will be made

0.

So, as a result here you will get a value of 5, here you will get a value of 9, here you will

get a value of 7 and here you will get a value of 12. So, you find that these values has

been placed in exactly the same locations from which the values are pooled. So, this is



you  are  pooling  operation  or  max  pool  operation.  And  this  is  what  is  your  unpool

operation; output of unpooling and all the remaining values will be equal to 0. 

So,  now that  I  have  this  upsampled  label  maps,  on  this  upsampled  label  maps  you

perform the deconvolution operation using the deconvolutional kernel. And you get a

label map which is of larger size than this particular label map, and this can be done in

every label in your deconvolution layers.

(Refer Slide Time: 26:27)

So,  by  performing  this  kind  of  operation,  the  authors  have  shown  that  using  this

deconvolution  network.  The  nature  of  the  feature  map  that  you  get  or  semantic

segmentation output that you get is much better than the semantic segmentation output

that you get from a fully convolutional network. 

So, here again some result as reported in the same paper that has been shown. So, this is

your original input image, you find that this input contains the bicycle. This is the feature

map or the label map that you get the coarsest at the coarsest level. This is the feature

map that you get after the next up sampling and the deconvolution operation. This is the

feature map that you get the next up sampling and convolution operation.

So, whatever was the size over here, here the size is twice of this, here the size is 4 x of

the size of this, here it is 8 x of this and so on. And this is your final label map that will

be obtained. So, you will find that gradually as you move from one layer to another layer



in the deconvolution part,  gradually the labels are being refined.  And as a result  the

semantically segmented output that you get using this deconvolutional neural network is

much better than the output that you get in case of fully convolutional neural network.

But at the cost of what is it that everything is good or everything is advantageous, there

is no disadvantage.

You find that in case of fully convolutional neural network, we did not have any switch

variable,  whereas when you go for this deconvolutional neural network you have the

switch variables.  And you have to have set of switch variables for every channel for

every layer, that means, the memory requirement for deconvolutional neural network is

much more than the memory requirement that you have in case of fully convolutional

neural network. So, in order to gain something, you have to pay for it, so that is the pay

that you make in terms of memory requirement when you use this deconvolutional neural

network.

So, till now what you have discussed is that given an input image, I assume that I have

our fully convolutional neural network or the deconvolution neural network, they are

properly trained. And bypassing this input image through any of these networks at the

output you get the semantic segmentation. But to get the semantic segmentation, the first

operation is how do you identify a segment because the output does not give you the

segment itself it keeps some real numbers. 

In our next lecture, we will see that what is this real number that you get and from that

real number you have to get you have to obtain the class level or the segment level. So,

in your next class, we will talk about how this class level can be obtained. And the other

very  very  important  part  is  training  of  this  neural  network’s  whether  it  is  fully

convolutional neural network or the deconvolution neural network. In both the cases, the

networks are to be trained properly before they can be used for semantic segmentation

purpose. 

So, we will talk about the training as well as generation of the class level of every pixel

or classification of every pixel into one of the possible classes available classes we shall

discuss that in our next lecture.

Thank you.


