
Deep Learning
Prof. Prabir Kumar Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 52
Deconvolution Layer

Hello,  welcome to  the  NPTEL online  certification  course  on Deep Learning.  In  our

previous  class,  we  have  talked  about  one  of  the  applications  of  the  deep  learning

techniques which was the face net and the purpose was to recognize or to verify human

faces, and the applications that we have seen that it has many applications starting from

biometric  authentication  to  security  to  surveillance,  health  care  and  many  more

applications.

And you recollect that the kind of network that we have considered so far that is the deep

convolutional  neural  network,  this  sort  of  network  that  we  are  considered  they  are

actually discriminative networks. In the sense, that the network learns various classes or

various categories of the objects or the images. And, once the network is trained properly

then given an unknown image or an unknown object the network tries to associate or

tries to classify that unknown image to one of the classes or one of the categories which

the network has already learned. 

That  means  it  basically  discriminates  one  object  from  other  objects.  And  the  face

recognition or face authentication, the image recognition, the character recognition all

these belong to this particular kind of category. Now, there might be other applications

say for example, I may like to apply the deep learning techniques for denoising or noise

removal from an image or maybe I want to apply the same machine learning technique or

deep  learning  technique  for  semantic  segmentation  of  an  image.  The  semantic

segmentation is nothing, but I identifying the different pixels within the image to which

class that particular pixel belongs.

So, there again it is a short of discrimination, but it is not the discrimination at the image

level, but it is the discrimination at the pixel level. That is every pixel will be classified

to one of the classes. If the classes are just two classes the background and foreground

then we have to decide whether a pixel belongs to foreground or the pixel belongs to

background. Similarly, if an image contains say car, human being, dog and many such



different objects then we may have to identify that whether a pixel belongs to a car or a

pixel belongs to a human body or a pixel belongs to dog region and the collection of all

those  pixels  belonging  to  a  particular  region  or  a  particular  category  that  forms  a

segment.  So,  semantic  segmentation is  one of the very very important  application in

machine vision techniques.

Now, you find that when you go for this kind of semantic segmentation or pixel wise

decision making then simple convolutional neural network that we have discussed so far

that really does not work. So, in this case what you may have to do is something which is

the  reverse  of  what  the  convolutional  network  has  done;  that  means,  the  kind  of

operation that is that what we need is what is a deconvolution sort of operation, that is

the reverse of the convolutional operation.

(Refer Slide Time: 04:19)

So, in today’s lecture what we are going to discuss is some applications of filtering or

semantic  segmentation.  But,  as  I  said  that  filtering  or  semantic  segmentation  these

requires taking a decision at the pixel level not at the image level and for which we need

an operation, which is some sort of inverse of the convolutional operation. So, what we

will  discuss  today  before  we  go  for  filtering  and  semantic  segmentation  kind  of

applications is what is deconvolution and what is upsampling. Because, when I talk out

about the convolutional neural network after say one or more convolutional layers we

had a upsampling there or which we called as a max pool layer. 



So, we will discuss about what is deconvolution and how the upsampling can be done in

order to move to your actual image domain because there we have to take the decision at

the pixel level in the image domain. So, let us see that what we have done in case of

convolutional neural network so far.

(Refer Slide Time: 05:47)

So, what we have seen that in case of convolutional neural network; obviously, you had

an input layer where the input was an image. So, here the input was the image. Then this

image is passed to next layer which is as a convolution layer, it may passed through a

number of convolution layers. So, we can call it convolution 1, convolution 2, then it

passes to say a max pool layer. So, what we have seen that what the max pool layer does

is within a neighborhood it extracts what is the maximum activation function or where

the feature value is maximum.

So, if I have if I take perform this max pool operation in a neighborhood of say 2 by 2

and suppose the activation values which is passed from this convolution layer 2 to this

max pool layer within this 2 by 2 neighborhood it had values something like 3, 8, 6, 4

something like this. So, out of these 4 activations you find the maximum value is actually

8. So, what the max pool layer will do is it will simply extract 8. So, all these 4 pixels or

all these 4 activations will be replaced by one activation which is the activation value 8. 

And as a result what the max pool layer does is it  reduces the dimensionality of the

feature map which is created by the convolutional layer. So, but as we said that when I



need to take an action at the pixel level then what I have to do is I have to explode this

and come to a pixel domain, where the size is same as your input size and the network

has to take decisions on every individual pixel within this image domain. So, as in the

forward direction we have the convolutional operations as well as upsampling operations

like max pooling.

In  the  reverse  operation  what  you  have  to  do  is  we  have  to  have  deconvolution

operations  along with  up  pulling,  that  is  here  what  we have  done is  we have  done

upsampling you have reduced to the dimension, in the reverse operation we also have to

increase the dimension so that finally, we can go to the size of the output which is same

as the size of the image. 

So, now, let us see what how this can be done. So, before that I will explain with one-

dimension the same is applicable in two-dimensional cases. So, what we have done in

case of convolution?

(Refer Slide Time: 08:47)

Suppose, let us assume that we had a set of input samples x 0, x 1, x 2, x 3, x 4 and so

on. And I have a convolution Kernel, say a convolution Kernel of size 3 or the Kernel

coefficients are given by a, b and c. So, during convolution operation what we have done

is we have placed at this Kernel, I mean the way the convolution is computed is in such a

way that say a is placed over here, the Kernel center if I assume the Kernel center is b, b

is placed over here and c is placed over here and this gives you the output sample y 0, y 0



is nothing but here we assume that we had padded it with 0, right. So, y 0 is nothing, but

0 times a plus x 0 times b plus x 1 times c. So, y 0 simply becomes x 0 times b plus x 1

times c.

Then if you shift the Kernel, you make it a over here, b over here c over here and you get

an output y 1, where y 1 is given by a times x naught plus a times x 0 plus b times x 1

plus c times x 2 and so on. Then to compute y 2 we have shifted the Kernel once more.

So,  a  came  here,  b  came  here,  c  came  here  and  the  corresponding  point  by  point

multiplication followed by the addition gives you y 2. And this is the kind of convolution

where we have said that this convolution is with stride equal to 1, and when I take a

convolution with stride equal to 1 your number of samples of the input and the number

of samples at the output that is the convolution output it remains the same. 

Then we have also said that instead of computing convolution with stride 1 we can also

compute convolution with stride 2. So, if you compute convolution with stride 2, then

number  of  samples  at  the  output  and  number  of  samples  at  the  input  they  will  be

different. In fact, the number of samples at the output will be less than the number of

samples at the input. So, convolution with stride greater than 1 reduces the size of the

feature map.

The same reduction in size of the feature map you get if you perform convolution with

stride 1 followed by a max pouring operation that is what is usually done in case of

convolutional neural network. But what is the difference between these two? When you

perform convolution with stride 2, let us assume say I have same one x 0, x 1, x 2, x 3

and x 4 which are my input samples and I want to perform the convolution with the same

convolution Kernel, but now in this case with stride equal to 2. 

So, my y is 0, now becomes a times 0 plus b times x naught plus c times x 1. Now, stride

is 2, so a is shifted here, b goes here, c goes here, so I get my y 1 which is a times x 1

plus b times x 2 plus c times x 3. So, this is what is my y 1. Similarly, y 2 again stride its

2. So, a goes here, b goes here, c goes outside, so here what I had is up adding with 0, so

my y 2 now becomes a times x 3 plus b times x 4.

So, you find that once this convolution is done your number of samples at the output of

the convolved output is 3 against when the number of samples at the input was 5. But

effectively what you have done is you find that I have not computed what would have



been the filter response if the convolution was centered at x 2. I have simply omitted that

particular computation. And it may be possible that at this location the Kernel response

of the activation would have been maximum. 

So, if I perform convolution with stride more than 1, I may miss some activations which

actually would have been maximum. So, it is always better that you perform convolution

with stride 1 followed by max pooling because max pooling had this been maximum the

max pooling operation would have captured this after performing convolution with stride

1.

Now, so, what we are talking about the reverse operation? This is what is the convolution

operation. What we are trying to find out is what is deconvolution. So, again to illustrate

deconvolution in one-dimensional case, you find that in case of convolution what we

have  done is  we have  found out  the  response  of  a  filter  placing  the  filter  over  our

receptive field. The deconvolution can be thought of just to the reverse process, that is if

I have a particular activation of the response of a filter where the filter has certain Kernel

can I throw the information in the reverse direction; that is can I create the receptive

field, ok. So, it is something like this.

(Refer Slide Time: 14:45)

So, suppose I have again my input samples which are x 0, x 1, x 2, x 3, x 4 and so on. So,

you find that when we have talked about the convolution our Kernels was placed like this

a, b, c this was the way we placed the Kernels and I computed the output sample as



weighted sum of the input samples where the samples are weighted by the corresponding

Kernel coefficient.

In deconvolution I just want to perform that reverse operation. How do I do it? So, now

what I do is I put my Kernel coefficients in this forms say a, b and c, these are my Kernel

coefficients. And what I get is this y is 0 is now becoming a times x naught, y 1 becomes

b times x naught and y 2 becomes c times x naught. So, this x naught which you can say

it is the filter response now flows to the other direction or it is distributed within the

neighborhood which we can say that a short of receptive field. So, a filter response is

now distributed to its neighborhood. 

And again I can have this strider operation. So, in the first case if I take the operations

with stride equal to 1, so this filter will be strided by 1. So, this is what I get. There is my

y 3. So, up to this my y 0 will be a times x naught, y 1 will be b times x naught plus a

times x 1, y 2 will be c times x naught plus b times x 1 and y 3 will be c times x 1. I can

go on further I again stride the filter  coefficients like this. So, it comes a, b, c and I

compute y 4.

So, now, you find that your y 2 becomes c times x naught plus b times x 1 plus a times x

2; y 3 becomes c times x naught plus b times x 2; y 4 becomes c times x 4 x 2. You can

go on. So, it is a, b, c now I can compute y 5, where y 5 will be c times x t; y 4 is now c

times x 2 plus b times x 3 and y 3 is c times x 1 plus b times x 2 plus a times x 3 and it

can go on like this.  And once you do this  you find that  this center  of the Kernel is

actually associated with y 1. 

So, as we have done in case of convolution that in order to have your input array and the

output  array size  to  be  same what  we had done is  we had to  added extra  0s  at  the

beginning, and at the end of the sequence in this case to have your input array size and

the output array size to be the same what you have to do is we have to crop these extra

elements that has been computed by this deconvolution Kernel. So, that your input size

and the output size remains the same. The same operation can also be done with stride

more than one. 

So,  you  found  that  what  we  have  seen  in  case  of  convolution  that  if  you  perform

convolution with stride more than one then the number of samples at the output becomes

less than number of samples at the input. Similarly, if I perform convolution with stried



more than one then number of samples that the output has to be more than number of

samples at the input. Let us see how does it actually happen. 

(Refer Slide Time: 19:11)

So, let  me assume that I have just  3 input  samples x 0, x 1 and x 2. And my filter

coefficients again is a, b and c, ok. So, first what will compute is I have again I compute

what is my a 0, what is my what is y 0, what is y 1, what is y 2 and all that. So, right now

I compute say y 0 over here, this is y 1, y 2, so y 0 will be a times x 0 till now, y 1 will be

b times x 0 and y 2 will be c times x 0. Then you shift the Kernel and as we said that we

are using stride 2, so this Kernel will be shifted by 2. So, now it becomes a, b and c and I

get y 2, y 3 and y 4. 

So, what is y 2 now? y 2 now becomes c times x 0 plus a times x 1, y 3 becomes b times

x 1 and y 4 becomes c times x 1. Again you shift it with stride 2, so I have a, b and c this

is what is my Kernel and I compute y 5 and y 6. But as we said before that this x y 0 and

y 6, these are the two deconvolution outputs which will crop because the center of the

Kernel coincides with y 1 here and the center of the Kernel coincides with y 5 here. So,

the  number  of  samples  that  you  are  generating  after  deconvolution  where  the

deconvolution stride is equal to 2 is equal to 5. So, I have created 5 samples against 3

samples at the input.

So, you find that if you perform deconvolution operation with deconvolutional Kernel

width stride more than 1, in that case you are expanding your output or in other words



we can say that we are gradually moving towards the original size of the image. And if

you look at this if you compare what was your convolution, what is the deconvolution, in

case of convolution we had put the Kernels as in this form a, b and c where x 0 was

multiplied with a, x 1 was multiplied with b, x 3 was multiplied x 2 was multiplied with

c to give you one sample of the output. In case of deconvolution, what you are doing is

you are taking this  simply the transpose of this.  So,  now, the a,  b and c the Kernel

coefficients that you get are nothing, but that transpose of the Kernel coefficients that

you have used for convolution purpose. 

So,  the  deconvolution  operation  is  also  sometimes  called  as  transposed  convolution.

Operation  system  whether  I  call  it  deconvolution  or  whether  I  call  it  transpose

convolution the operation is same. There is another name which is given to the same

operation which is known as sub pixel convolution. So, what is sub pixel convolution? In

case of sub pixel convolution, again let me assume that we have 3 input samples x 0, x 1

and x 2. 

(Refer Slide Time: 22:51)

What you do is you up sample these input samples. So, what we do is I make it x 0, 0, x

1, 0, x 2. So, from 3 samples I am upsampling it to 5 samples interlaced with 0s. Now, if

I perform the same deconvolution operation with the Kernels that we have used a, b, and

c, my operation will be something like this. So, if I put a, b, c over here I get my y 0, I

get my y 1, I get my y 2, I get my y 3, I get my y 4 and so on. 



But in this case first what I am getting is a, x 0 times a that comes over here x 0 times b

and that gives me y 0, x 0 times c that gives me y 1 then you shift the Kernel with stride

1. So, it becomes a, b and c over here, go on doing it, a b c over here, a b c over here, a b

c over here. So, you find that your y 0, now becomes b times x naught plus a times 0. So,

this is actually b times x naught; y 1 becomes c times x naught plus b times 0 plus a

times x 1, so it is c times x 0 plus a times x 1; y 1 becomes 3 times 0 plus b times x 1

plus a times 0, so it is simply b times x 1; y 3 becomes c times x 1 plus b times 0 plus a

times x 2, so it is c times x 1 plus a times x 2. Similarly, y 4 simply becomes b times x 2.

So, if you compare this computation with the previous computation that we have done on

our original samples x 0, x 1, x 2 with stride equal to 2, where the number of output

samples was increased to 5. And I am getting the same thing the same output if I simply

upsample the input samples interlaced with 0s and then perform the convolution of the

deconvolution with stride equal to 1 and obviously, you crop the boundary pixels or the

boundary sample values output values that you get to get your acceptable sample values.

So,  both  these  operations,  the  deconvolution  operation  with  stride  2  and  the

deconvolution operation with stride 1 taking the upsampled version of the input samples

both of them give you the same output. And this is called sub pixel deconvolution, sub

pixel convolution. The reason being I actually have samples x 0 and x 1 at index location

0 and 1, but I am assuming that I have a virtual sample in between x 0 and x 1 which is

my sub sample or sub pixel and that is at location in between index 0 and 1. 

So,  this  is  also known as  sub pixel  convolution.  So, whether  I  call  it  deconvolution

operation  or  transpose  convolution  operation  or  sub  pixel  operation  all  of  them are

actually same. And the same is equally applicable in case of two-dimension. So, how do

you apply it in case of two-dimension?



(Refer Slide Time: 27:13)

Let us take this particular array. Say, I have input set of samples, I am taking a 3 by 3

array. My input set of samples are x 0, x 1, x 2, x 3, x 4, x 5, x 6, x 7 and x 8. So, this is

my 3 by 3 array of the pixel values or the 3 by 3 array of the feature map. And I assume

that I also have a 3 by 3 Kernel convolution or deconvolution Kernel whatever you call it

which is a, b, c, d, e, f and g, h, i, where e is the center coefficient of the convolution

Kernel. 

Now, how the convolution will be done or the deconvolution will be done? If I put this

Kernel centered at location x naught and whatever the deconvolution value, that I get let

us  put  it  over  here.  So,  I  get  e  times  x  naught  over  here  because  e  is  the  center

coefficient, over here I get a times x 0, over here I get b times x, b times x 1, here I get c

times x 2, here I get d times x 3, here I get sorry the operation is actually like this. So, I

am putting my Kernel centered at say x 0. And whatever the deconvolution values that

you get will be something like this. So, I put over here. So, here I get e times x 0. Here,

because this one has to be expanded to all  its neighbors after being weighted by the

corresponding Kernel coefficients.

So, at this location what I will get is h times h 0, at this location I will get i times x 0, at

this location I will get f times x 0. Similarly, if I put the Kernel centered at location x 4,

let me put the result over here. So, I am putting the Kernel centered at location x 4. So,

over here I will get e times x 4, over here I will get b times x 4, here I will get a times x



4, here I get c times x 4, here I get f times x 4, here you get I times x 4, here it is h times

x 4, g times x 4 and here what you get is d times x 4. 

And you find that when I am spreading this information of the feature value export to its

neighborhood  in  various  locations,  say  for  example,  in  this  location  I  will  get  also

information coming from other neighboring pixels. So, all those partial informations you

have  to  add  together  to  find  out  what  will  be  the  final  deconvolved  value  at  this

particular location. So, here I will get information from x 1, I will get information from x

2, I will get information from x 3 and so on, but I bring weighted by the corresponding

Kernel coefficient and all these partial products are to be added together to find out what

is the final deconvolved value at this particular location. 

The same operation as we have seen that sub pixel convolution can be done, if I simply

go for upsampling of this interlaced with 0 and then perform the convolution operation

with the same Kernel with stride equal to 1. That gives you expansion or increase in size

of  the  deconvolved output.  So,  when we have  talked about  the  convolutional  neural

network,  we  had  the  convolution  operation  followed  by  the  max  pooling  operation,

where you have said that a max pooling is some short of down sampling of the features

that you get, so that your size gets reduced. 

So, in the reverse operation what we have to do is first we have to go for upsampling,

that is whatever max pooling operation has to be done that has to be unpooled and after

unpooling I had to convolve with the convolution Kernel or I have to deconvolve with

the d convolution Kernel to get your final feature maps. And that has to be done stage by

stage. It depends upon how many convolution layers and how many max pooling layers

you had on the convolution side. On the reverse side I have to have equal number of max

pooling operation and the deconvolution operation before I finally, get my output.

So, today what we have discussed is that to take some decision at the pixel level or the

image level, I need to perform some operation which is just opposite of the convolution

and max pooling operations that we have done in the convolutional neural network. And

this inverse operation is what is the deconvolution operation along with the up pooling

operation. And here our next class or next few classes, we will discuss about that how

these  deconvolution  operations  are  useful  for  image  domain  operations  like  noise,

filtering, semantic segmentation and different kinds of applications.



Thank you.


