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Hello welcome back to the NPTEL online certification course on Deep Learning. For last

2 lectures we are discussing about the normalization techniques or normalization of the

feature vectors. What we have seen in the previous class or in the previous 2 classes are

why do we need normalization  and in  the  previous  class  we have  talked about  one

particular normalization technique which is known as Batch Normalization.

So,  let  us  quickly  recapitulate  what  we  have  done  in  previous  2  classes.  The  basic

purpose of normalization as we have discussed is to make your learning procedure more

efficient, faster and more accurate. And while doing so, while you train a neural network

or deep neural network; one of the problems which are faced while training is what is

known as covariate  shift  and covariate  shift  particularly occurs because normally the

kind of training that we employ is what is known as batch training or batch stochastic

gradient descent.

And in this algorithm you take your training examples in batches where different batches

are  usually  non  intersecting  and  you  train  your  network  using  these  batches  of  the

training examples one batch at a time. Now, what may happen is, as you have data in the

batches which are disjoint the distribution or the data distribution in one batch may be

quite different from the data distribution in another batch. And what we have seen earlier

that the way a classifier learns is, the classifier basically learns the distribution of the

data and based on the distribution of the data it tries to find out what is the boundary

between 2 different distributions.

Say for example, if we say that we want to classify or we want to separate between say

birds and flowers it is expected that the feature vectors corresponding to bird have one

distribution  whereas,  the  feature  vectors  corresponding  to  flowers  have  some  other

distribution and the classifier learns the boundary between these 2 data distributions. So,

after the classifier is learnt if you find that one of the unknown data falls on one side

which may be the side in which the distribution of the data belonging to the birds exists



then that unknown data will be classified as a bird, if it falls on the other side then the

unknown data will be classified as a flower.

And that is the case when you have a 2 class classifier, if you have multi class classifier

say for example, I have birds, I have flowers, I have say deers, I have cars and all that.

So, the feature vectors belonging to each of these different categories they will have

different distributions in the feature space or in the vector space and in such cases what

the classifiers learn is for all different classes the classifier learns something known as

discriminating function.

So, for one class the distribution discriminating function may be g 1, in another class the

discriminating function may be g 2, for another class it is g 3 and so on. So, it is expected

that if the discriminating function g 1 is meant for say bird class, then given a data or

example  from the data  distribution  from the bird class g 1 output will  be maximum

among all other outputs of all other discriminating functions. So, as a result the unknown

data will be classified to bird class.

And here again if the distribution of the data belonging to the same class changes, then

learning the classifier or to have a particular discriminating function for different classes

that  will  be very difficult.  And as a result  you are learning or training of the neural

network or the classifier becomes very very slow.
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So, what we have seen before is we have talked about batch normalization technique and

today  we  are  going  to  talk  about  the  other  normalization  techniques  like  layered

normalization, instance normalization and group normalization. And while talking about

these normalization techniques we had taken a particular example say as given over here.

(Refer Slide Time: 05:18)

So, in this example what we have tried to do is, we have tried to discriminate between

say flowers from all other classes. So, flower belongs to one class and the images from

all other classes belong to another class. Now, find that we have taken 2 different batches

of data or training samples batch 1 is on the left hand side and batch 2 is on the right

hand side. 

So, positive class in our case in this particular case is the flower another in batch 1 you

find that this positive class that is the examples of flowers that we have they are mostly

whitish in nature or they are not rich in color. Whereas, in batch 2 all these flowers they

are very very rich in color.

So,  when you represent  them into  the  vector  space  then  the  vector  representing  the

flowers in batch 1 distribution of those vectors and the vectors from for flowers in batch

2 the distribution of those 2 vectors these 2 distributions are likely to be quite different.

So, as a result so, if I put it like this say take a feature space something like this another

feature space over here, in the positive class in flowers say in this particular case all the

positive class the features will be distributed like this. Whereas, in batch 2 all the positive



class that is the colored features they will have distribution they might have distribution

something like this.

Now, on the other hand if you take examples of negative classes maybe negative classes

will  have  distributions  of  this  form,  over  here  again  the  negative  classes  will  have

distributions of this form. So, in one case the classifier which discriminates flowers from

all other classes that will they it will learn this boundary whereas, in this case it will learn

a boundary something like this. So, you find that the boundaries which are learnt from

the classifiers they are different in these 2 different cases.

So, when you are going for training in batch manner that is a for example,  in batch

gradient descent your classifiers will simply hop from one classifier to another classifier,

because in different  batches  we are getting  different  sets  of data and effectively  that

slows down the learning process or the rate of learning becomes very very slow. So, in

order to avoid this  you go for normalization techniques and in case of normalization

techniques what is done is all the data are normalized to say 0 mean and unit variance or

unit standard deviation.

So, if you do that, in that case you find that all the data because now they are normalized.

So, when the classifier is the data while trying or while training while being trained it

finds the distribution to be the same right. So, unlike over here what you have seen or the

distribution changes, as the distribution remains the same your learning process becomes

very very fast. And we have also said that this is not only applicable at the input layer

because this raw data that we are shown we are showing this raw data is fed to a input

layer.

This is also applicable to the hidden layers, there is not being in hidden layer if I consider

the training of layer l, while when you train layer l it is based on the gradient of the error

gradient which is propagated to layer l from the output layer as well as it also depends

upon the activation output of the previous layer that is l minus first layer.
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So, it is something like this if I put it in this form say I have a neural network having

multiple number of layers. So, these are the different neurons, this is my l th layer, this is

l plus first layer, this is l minus first layer. So, when you train this l th layer or when the

weight  vectors  w  l  which  are  trained  between  the  layer  l  minus  1  2  layer  l  this

upgradation of this weight vectors depends upon the error which is propagated up to the l

th layer as well as the activation output of l minus first layer so, which is l minus a l

minus 1. Now, you find that when you are training or updating this w l at time instant t it

depends upon what is the output at that time instant which is a l minus 1 activation from

the previous layer.

Now, this does not this distribution of a l minus 1 again it is not static, because during the

gradient descent procedure or back propagation learning you will also modify the weight

vectors w l minus 1 that is the weight vectors between the layer l minus 2 to l minus 1.

As a result next time when you get a l minus 1 at time instant say t plus 1 the distribution

of this over the same set of data in the same batch may not remain the same, because this

w l minus 1 is not same anymore it is changing.

So, as a result you find that training or for learning of w l again this is not stable this is

going to be unstable because the distribution of the data based on which w l is being

trained is been updated that distribution also varies over time. So, the same normalization

technique that we have done for the input layer is also applicable in the hidden layers.



So, in that case this a l minus 1 that is the outputs from the l minus first layer they are to

be normalized. So, for this normalization purpose what you do is you find out, what is

the variance or standard deviation of the data and what is the mean of the data.

(Refer Slide Time: 11:54)

So, for any x, data x, x is normalized as x minus mu x, for mu x is the mean of the

population divided by square root of epsilon plus sigma x square. What the sigma x is,

the  standard  deviation  mu  x  is  the  mean  and  epsilon  is  a  very  very  small  positive

constant which is introduced to make your division stable, that is I do not come across

any situation like division by 0.

So, this is how the normalization procedure is done and you find that as because of this

normalization as the data distribution is now normalized. So, the training of every layer

becomes independent of the training of other layers and at the same time because now

your distribution becomes stable the classifier which is being trained that does not have

to hop from one boundary to another boundary in different batches.

So, as a result the training becomes more stable, it becomes faster and the training of one

layer  becomes almost  independent  of the other layer, but  when you do so,  the other

problem comes into picture. That is you find that the data from all different classes they

are being normalized to be 0 mean and unit variance or unit standard deviation. So, if it

is  done  in  that  case  the  data  loses  it  is  class  belongingness,  I  mean  you  cannot

discriminate the data belonging to different classes anymore, because the distribution of



every data irrespective of from whichever class the data has come it has 0 mean and unit

variance.

So,  apart  from this  short  of normalization  the next  operation  that  is  done is  what  is

known  as  a  re-parameterization.  What  is  re-parameterization?  Suppose  through  this

process I have or my normalized data which is x hat so, given an input data which is x i

the normalized data is x i hat. So, using this x i hat you renormalize your data in the

sense that from here I create y i which will be some say gamma times x i hat plus beta. 

Where this gamma and beta they are actually tunable parameters and gamma becomes

the  new standard  deviation  and  beta  becomes  the  new mean  and  because  these  are

tunable parameters so, the class belongingness of the data can be encoded within gamma

and beta. And this gamma and beta are trained using the using similar back propagation

algorithm along with the tuning of the parameters of your neural network.

So, along with updation of the weight vectors you also update this gamma and beta. So,

that is how this gamma and beta are being trained and as a result you find that through

this normalization what you are actually doing is, you are re projecting the data or in the

other sense you are re-parameterizating the data distribution.  And because of this re-

parameterization what is ensured is, that even if there is covariate shift, but the shift of

the data distribution belonging distribution of the data belonging to the same class this

shift will be minimized ok.

The shift  will  not  be much in very very small  as a  result  the training  of the neural

network or the training process will be stable and it will be faster. So, what we have seen

in our previous class is that we have talked about the batch normalization techniques.
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And in this batch normalization techniques what we have shown is the way this mean

and standard deviation they are calculated. So, we have taken examples of the situation

that suppose we have the data belonging to different classes in a particular batch and for

all this data you are computing the feature maps.

So, here what is shown is that each of these textured outputs they are actually feature

maps generated by different convolution kernels. And in batch normalization the way

you compute the mean and the standard deviation or mean and the variance is as follows.

(Refer Slide Time: 17:15)



So, I assume that in a batch say I have N number of training examples and suppose they

are there are C number of convolution kernels. So, you have C number of channels being

created  from every example  in batch N in N in every example in a  batch having N

number of examples.

So, these channels I can represent in the form of this matrix. So, what does this matrix

mean? So, in this batch suppose this is my example 1, this is example 2, this is example 3

and so on and at the end I will have example N as there are N number of examples in this

batch. And this is the channel number 1, channel number 2, channel number 3 and so on,

this is channel number C every channel is the output of one convolution cannel.

And every channel I also assume is of size W by H. So, W is the width of the channel

and H is the height of the channel. So, all these channels stack together that becomes a

feature map which is fed to the next layer for training during the training operation and it

is spread to the next layer for classification during the testing or inferencing operation.

(Refer Slide Time: 18:40)

So, given this in batch normalization what you do is, you group the outputs of every

channel right say for channel 1 you group the outputs of channel 1 for every example.

Similarly, you group the outputs of channel 2 for every example, you group the outputs

of channel 3 for every example and so on. So, these are the groups that you formed.



And once you have this grouping for every group you compute, what is the mean? And

what is the standard deviation or variance? So, having this as channel 1 this will give you

mu 1 this will give you sigma 1, if this is the output from channel 2 I will get mu 2 I will

get sigma 2, from here I will get mu 3 I will get sigma 3, here will get mu 4 I will get

sigma 4 and so on.

So, you find that you are grouping the outputs of individual channels together. So, all

channel 1 are in one group, outputs of channel 2 are in another group, outputs of channel

3 are in another group and so on. And for every channel you compute the mean and

standard deviation and these feature maps are being normalized with respect to these

mean and standard deviation. Now, here again you remember one thing that when I go

for normalization how I can normalize.

(Refer Slide Time: 20:19)

Take for example, as we have shown that every neuron in every layer consists of 2 parts;

one  part  computes  the  weighted  sum of  all  the  outputs  that  it  is  receiving  from the

previous layer.

So, this is the l th layer, this is a activations of the previous layer that is a l minus 1. And

the first part of the neuron computes the activations weighted sum of the activations that

it receives from a previous layer and this output let us call it as x and the other part is the

computation of activation of this x. So, this gives you output of this neuron is what is f x

or I can say that this is activation of the l th layer. 



Now, when I go for normalization you can normalize either a l or you can normalize x

and what is more popular is normalization of x rather than normalization of a l or the

activations of the l th layer right. So, when I discuss this normalization in our case we are

assuming that this normalization is with respect to x right. So, here as we have shown

that for each of the group of channels I have mean and standard deviation.

(Refer Slide Time: 21:42)

And for this mean and using this mean and standard deviation you normalize the outputs

of the channels and this is what you get and if I put all these means for all the channels in

the form of a vector or the variance of all the channels in the form of a vector I get the

mean vectors, I get the variation variance vector or the standard deviation vector. And the

normalization as we have just shown that normalization in this case is x hat will be x

minus  mu  C  upon  square  root  of  epsilon  plus  sigma  C  square.  So,  this  is  the

normalization operation.
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And  after  that  as  we  have  said  before  that,  what  you  are  going  for  this  re-

parameterization.  That is from every x i normalized training vector x i we create the

batch normalized vector y i which is gamma x i hat plus beta and this is what is your

batch normalized data.

(Refer Slide Time: 23:04)

So, you find that what I need to do now is that for every layer or for every neuron as we

had said that there is an aggregation aggregator called which collects the weighted sum



of the inputs that it receives from the previous layer and there is an activation part and

we are normalizing this aggregator part which is my x.

So, in other sense I can say that in between x and the activation. So, I have this portion

which computes the weighted sum, I have this portion of the neuron that computes or the

node which is gives you the activation and in between you introduce a layer which is in

the batch normalization layer or BN. So, the output of this is batch normalized it is fed to

the activation function layer activation layer and then you finally, get the output a l from

the l th layer. So, this is how the batch normalization is to be done.

So, now, we said that when you talk about these normalizations, the different types of

normalizations that you have that depends upon, how you compute the mean and sigma

vectors alright. So, in case of batch normalization it is all the channels grouped together

and for that channel you compute the mean and the standard deviation.

So,  if  you  consider  what  is  the  dimensionality  of  this  vector  mu  B or  what  is  the

dimensionality of this vector sigma B squared. If we have C number of channels then

this vector mu B will have C number components, because for every channel I will have

1 mini. Similarly sigma B square will also have C number of components, because I will

have one variance for every channel so; that means, I will have mu 1 I will have sigma 1,

I will have mu 2 I have sigma 2 and since I have C number of channels I will have mu C

I have sigma C and so on.
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And once you compute this then the way you go for updation or tuning of the mean and

sigma,  the  tuning  of  gamma  and  beta  which  are  the  re-parameterization  or  the  re-

projected parameters will be again by gradient descent procedure. And for that you have

to take that gradient of the loss function with respect to B with respect to gamma as

given over here and you also have to take the gradient of the loss function with respect to

beta as given over here. So, this is what is your batch normalization.

(Refer Slide Time: 26:18)

Now, let us talk about the other normalization procedure which is say and this is where

what we have shown is what is the effect of batch normalization that you get. So, this is

an experimental output which is given over here as given in this particular paper right

and the experiment was done on a network known as inception and the initial learning

rate of the network was given as 0.0015.

So,  the  experiments  are  done on the baseline  with  the same learning rate  of  0.0015

without any batch normalization then it was done with batch normalization with initial

learning rate being 5 times of the initial 0.0015. Then another experiment with learning

rate initial learning rate which is 30 times of 0.0015 and then again the normalization

was applied with an activation function which is not ReLU, but sigmoid.

So, as it has it is shown on the right hand side you find that this particular curve shows

the performance of the validation accuracy without any normalization and you find that

to have an accuracy of say more than 0.7 it is say 0. 72 or so somewhere over here the



number of iterations which is required is more than 30 million. Whereas, when you go

for batch normalization as is given over here with a learning rate initial learning rate of

0.0015,  you  find  that  the  same validation  accuracy  is  obtained  within  a  number  of

iterations which is less than 15 million right.

Similarly over here this is the batch normalization with initial learning rate which is 5

times of 0.0015 you take much less number of iterations to achieve the same accuracy.

Similarly, over here with an learning rate of 30 times of 0.0015, here again the number of

iterations required is much less compared to the case when no normalization has been

applied. Of course, this is the one which shows instead of ReLU if you use sigmoidal

function as a non-linearity. So, over here you find that when you use sigmoidal function

the performance I mean with sigmoidal function even your validation accuracy is much

less.

So,  that  shows  that  batch  normalization  improves  the  performance  or  improves  the

learning  rate  you  will  learn  faster  as  the  covariate  shift  is  minimized  and  also  the

different  layers of the neural  network are trained independently I  mean they become

almost independent of the training of other layers.

So, will stop here today in this lecture in subsequent lectures we shall talk about the other

normalization techniques and as we have said that other normalization techniques are

basically the way you compared the mean and the variance or the mean and the standard

deviation.

Thank you.


