
Deep Learning
Prof. Prabir Kumar Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture - 47
Batch Normalization- I

Hello, welcome back to the NPTEL online certification course on Deep Learning. Since

our previous class, we are discussing about the normalization and in the last class we

have discussed that what is the role of normalization, what we need normalization

techniques, so that your classifier design can be faster or the training of the classifier can

be faster and the classifier can be more stable.

(Refer Slide Time: 01:58)

Particularly, we have taken an example with the help of batch normalization techniques

or why we are going for batch normalization is; the classifier training is or the learning

process is in the form of batches. So, the algorithm which is mostly used is what is

known as batch gradient descent or batch stochastic gradient descent approach.

So, where for training of the classifier or training of the deep neural network, you feed

your training data into many batches where every batch contains may be say 10 training

examples, 15 training examples, 100 training examples and so on that depends upon

whether your batch size will be small or batch size is large, ok.

So, we are assuming that we are given these two different batches and the problem that

we want to do address, so the classifier if classifies the flowers category from non-flower

category. So, when you give the batches, the batches, every batch will contain some

images from the flower some images from non-flower. So, these are the two different

cases that have been shown here. On the left hand side we have batch 1 and on the, right

hand side we have batch 2.

So, you find that the images of the flowers which are in the first batch they are not rich in

colour, they are mostly whitish whereas, images of the flowers which are in the second

batch or batch 2 they are very very rich in colour. So, as a result when you try to extract

the features out of these flowers which are whitish in batch 1 and which are very very

colourful in batch 2 the distribution of features of the flowers in batch 1 and the

distribution of features of the flowers in batch 2 they are likely to be different.

So, as a result I can have a situation like this. So, in the first case, the flowers we can

have the feature distribution something like this, whereas, non-flowers could have a

distribution of features which are like this. So, these are the distribution features in the

non-flower category. As a result you find that your classifier boundary will be something

like this.

Whereas, in the second case again because now the flowers are more colourful, so it is

quite possible that the distribution of features for the images belonging to flowers will be

something like this whereas, the distribution of features of the images which would do

not belong to the flower category may be something like this. So, as a result of that your

classification boundary will be something like this.

So, now we find that though your images belonging to the same category of flowers, but

because of their appearance the computed features may have different distribution. And

as a result while training the classifier simply hops from one boundary to another

boundary. In some cases it will decide this boundary, in some cases it will decide this

boundary. So, as a result the time taken to train the classifier or the time taken to train

your deep neural network becomes very large.

So, this can be avoided if we can somehow normalize the feature vectors, so that the

distribution of all the feature vectors will belonging to the same class will be more or less

than. And the kind of normalization that we can apply in this case is a type of

normalization that we have already discussed.

(Refer Slide Time: 05:09)

Say for example, for every feature or the set of feature vectors belonging to a particular

batch this is a set of feature vectors X, I can compute the mean of the feature vectors

which is mu X, I can also compute the standard deviation of the feature vectors which is

sigma X, and then I can normalize this X as X hat is equal to X minus mu X upon square

root of some epsilon plus sigma X square.

And this we have already discussed before that this epsilon is a very small positive

quantity, this ensures that if this sigma X somehow becomes 0 I do not have a situation

of a unstable division; that means, I do not get a case of division by 0. So, this is a sort of

normalization that can be used. Now, you find that this sort of normalization what we

have discussed is with respect to the input because we are feeding the images to the input

layer.

This is applicable not only in the input layer this is also applicable in the hidden layers as

well. Why should it be applicable to hidden layers? So, now, let us try to see that why do

we need normalization even in hidden layers. So, for to discuss about that to see why you

need normalization in the hidden layers, let us look at a typical architecture of a deep

neural network.

(Refer Slide Time: 06:25)

(Refer Slide Time: 06:51)

So, the architecture of a deep neural network as we have already seen that it will be

something like this that I have a number of layers, in every layer I have a number of

neurons which is like this, right and from every layer to every other layer I have a set of

parameters or set of weights. So, if this is my l-th layer this is my l minus first layer, this

is l plus first layer and so on.

So, from every layer say l minus first layer the activations are fed to the l-th layer

through a set of parameters or through a set of weights. So, every node in the l-th layer

gets an weighted sum of the activations of the previous layer and then on this weighted

sum it performs another non-linear operation and the kind of non-linear operation

function that we are considering in this case is ReLU non-linear function.

So, at the l-th layer you get an activation vector let me call it an activation vector say a l,

where it will be a l 1 from the first neuron a l 2 from the second neuron and so on. So,

those are the components of this activation vector. And this activation vector is fed to the

next layer to the that is l plus first layer that computes the activation l plus 1, which is fed

to layer say l plus 2 which computes a l plus 2 and so on.

Now, during training at the final output I have some activations say O at the final layer,

say O f, so this is the final output that I get from the output layer, ok. To make it clear

instead of O, let me use the term say my final output will be say some f at the final layer.

And during back propagation what you do is you compute your error at the output and

then following the gradient descent procedure in the backward pass you pass that

gradient to the layers from the output side to the input side and while doing so, in every

layer you go on updating the weight vectors or updating the parameter vectors. That is

what you do.

Now, when you come to the updation of or say come to this layer l only, you find that l

the layer l gets activations from layer l minus 1 which are say activations a l minus 1.

And based on the distribution of a l minus 1 you adjust these weight vectors of layer l.

Now, we find that if a l minus 1 is steady; that means, in every epoch the distribution of a

l minus 1 remains the same, then learning of the layer a l will not be any will not be a

problem because the distribution of a l minus 1 which is coming from l minus first layer

that remains the same.

But what happens? That during this training process this layer a l minus 1 is also

updating its weights; that means, the weight vectors from layer l minus 2 to layer l minus

1 that is also being updated. The weight vectors from layer l minus 1 to layer l they are

also being updated. So, as a result this a l minus 1, the distribution of this may not remain

same over the epochs. So, even if you are feeding the same input in the same batch the

distribution of a l minus 1 the features which are computed at a l minus 1 may be

different in different epochs. So, leading to the same problem of covariate shaped.

So, even here, even in the hidden layers or the internal layers I have to take some action

so that this covariate shaped can be minimized. So, for minimization of this covariate

shaped as we have seen before that I have to go for normalization of these weight vectors

and in most of the cases what is tried is that you remap this vectors in such a way that the

mean of all these feature vectors become 0 with a variance or standard deviation equal to

1.

So, with this introduction that I need normalization not only at the input layer on the raw

data, I also need normalization even at the hidden layer because the features which are

computed from different layers even for the same input over different epoch or different

training instances the distribution of those feature vectors may be different which I had to

take some measure to erased that shape of the distribution. So, this is how the covariate

shaped the problem of covariate shaped has to be addressed.

(Refer Slide Time: 12:19)

So, let us see that how we can do it. So, there are different ways in which this

normalization can be done, one of the technique is what is known as batch normalization.

You can also have what is known as layer normalization, you can have another technique

known as instance normalization or you can also have a group normalization techniques.

So, these are the different variants of the normalization techniques and we will see a bit

later that the main difference is the way you compute the mean and standard deviation.

So, first let us discuss about what is batch normalization.

(Refer Slide Time: 12:57)

So, in case of batches as we said earlier that you are feeding the inputs in batches, right

you have the inputs from both the positive class as well as negative classes. And in every

layer, so let us assume that we are now talking about some layer say l-th layer. In l-th

layer, we have assuming that this is a convolution neural network, in l-th layer I have a

number of convolution kernels.

So, depending upon the number of convolution kernels there will be different channels of

features which are computed and all these feature channels when you concatenate

together that becomes a feature map and this feature map is now then fed to the next

layer during the forward pass. So, let us assume that in a particular batch, so these are the

different examples, training examples which are provided in a particular batch for

training of the deep neural network.

And in the n-th layer every convolution kernel forms a feature and let us assume that the

number of convolution kernels in the l-th layer that we have is 5, so as a result I have 5

different feature components. Each of these feature components are of size say W by H

or W is the width of the feature map and H is the height of the feature map.

So, finally, the feature map which goes to the next layer or l plus first layer that becomes

a tenser. This tenser have 5 channels which is same as the number of convolution kernels

that I have and the size of each of these channels depends upon how you compute the

convolution, whether it is with stride or without stride and how do you perform the

pooling operation, ok.

As we said that pooling is nothing, but pooling eventually gives you a sort of

dimensionality reduction or data reduction of the features that you compute. So,

assuming over here that a particular batch has got say this 4 different images, training

images, I have these 4 different feature maps, where every feature map has got certain

number of channels and every channel has certain width and certain height. So, this is the

kind of feature maps that you get which are to be fed to the layer l plus 1.

(Refer Slide Time: 15:50)

Now, what you do in case of batch normalization? In order to explain that let me arrange

the feature maps or the channels in this form. So, over here in the horizontal direction

what I put is the different training examples in a given batch say B. So, these are the

training examples in a given batch. And in the vertical axis what we have put is the

different channel indices, so obviously, the number of such channels that you have as we

said is same as the number of convolution kernels.

And each of this channel has a size it has an width W and height H, so that is the size of

every channel and all these channels being concatenated together gives over the feature

map, ok. So, N actually gives you what is the batch size. I have N number of examples

training examples in a particular batch and C is the number of channels and W and H is

the width and height of every channel.

So, let us organize our feature map something like this. And this will help us to explain

how the different types of normalizations, the batch normalization, instance

normalization, layer normalization, group normalization and all that they work.

(Refer Slide Time: 17:14)

So, first we are talking about the batch normalization. In case of batch normalization,

what you do is you collect all the identical channels from all the training examples in the

same batch and group them together. So, here what we have done is, so if I put this as

say channel number 0, this is channel 1, channel 2, channel 3, channel 4 and so on.

So, this is channel 0, channel 1, 2, 3, 4 and so on, you find that in this group we have

made a group of channel 0s computed from all the training examples. This is a group of

the features in channel ones from all the training examples. This is the group of features

from channel 2 from all the training examples.

And then when you compute the mean and standard deviation, you compute one mean

for this and one standard deviation for this, say this is mu 0 and standard deviation 0, I

am putting it as subscript 0 because they are computed for from the 0th channel. This

may be mu 1 sigma 1, this may be mu 2 sigma 2 and so on.

So, these two parameters mu and sigma are computed from identical channels the same

channels over all the training examples and that is how you compute the mean and sigma

in channel in the batch normalization technique. And using this mean and sigma values

you go for normalization of the data. So, let us see how this is done.

(Refer Slide Time: 18:59)

So, basically when you are computing the mean of a particular channel this is your

expression say x i C j k. So, this x represents one feature element in channel C, at

location j k in that particular channel feature and the number of such channels or the

number of training examples that we have is total N. So, mu C that is the mean of a given

channel is given by x i C j k, where i and j, I said are the column and the row index

within a single channel, ok.

And sorry j and k represents the row and column index within a given channel C and i is

the index of the number of training examples that you have. So, the way you compute the

mu C, mu for a particular channel is given by this expression. In the same manner, you

compute the variance that is sig sigma C square over following the same indices it

becomes x i C j k minus mu C square of that and you sum it over i j and k and then we

normalize with N W and H and that becomes the variance for channel C.

And using this variance you go for normalization as we said before, so your normalized

feature value x hat now becomes x minus mu C upon square root of epsilon plus sigma C

square. So, this is your normalized value.

(Refer Slide Time: 21:07)

So, as a result if I can put it in another form also all the channels put together can be

represented as a vector. So, what I do is, I compute the mean vector mu p over a batch

which is given by x i, i varying from sum of x i, i varying from 1 to m and then you

normalize with respect to m. So, in this expression m is the number of examples that you

have within the batch or the number of training examples within the batch.

In the same manner, you compute sigma squared within a batch that is sigma B square

and then you normalize x i with respect to this mu B and this sigma B. So, your

normalized value becomes x i hat which is x i minus mu B upon square root of epsilon

plus sigma B square. So, this is what is your normalized value.

So, once you do that you find that all these normalized features that is x i hat or the

collection of x i hat will have a mean value equal to 0 because from every x i have

subtracted mu B which is the main vector, ok. And then you have divided you have

normalized with respect to the standard deviation which is sigma p. So, as a result all x i

hat we will have mean 0 and standard deviation 1.

Now, we find that there is one problem if on every data I map it to or I do some

transformation this normalization, so that for all type of data your mean is 0, standard

deviation is 1. Then you find that the data or the this new distribution, the redistributed

data loses its class identity because every data now have the same distribution that is

mean 0 and standard deviation 1. So, which is not actually good for your classification

purpose.

In classifier classification, every distribution should retain its class identity. So, in order

to do that you are not only satisfied with the normalization with respect to mu and sigma,

but what you need is you need some sort of reparameterization. So, this x i hat that you

get this is now reparameterized. So, what you do is from this x i hat you map it to

another data y i, where y i is gamma x i hat plus beta; where this gamma and beta. So,

now, gamma becomes the standard deviation of this reparameterized data and beta

becomes the mean of this reparameterized data.

And that is what your batch normalized output. So, this batch normalized output, so this

new distribution that we are generating that has two parameters one is gamma, other one

is beta. And this both this beta and gamma are trainable or tuneable. So, while you train

your neural network for the parameter vectors or weight vectors during gradient descent

procedure at the same time you also train the neural network to tune these two new

parameters which are gamma and beta.

And these two new parameters as they will be tuned with your input data during the

training process, these two parameters will retain the class identification which will be

subsequently helpful for classification of the data. So, how that is done?

(Refer Slide Time: 25:03)

So, you put that over here. So, what I need is if I want to tune this parameters gamma

and beta during for our gradient descent approach following the in the backpropagation

learning technique; obviously, I need to get the gradient of the output error with respect

to this gamma and beta. And you find that as has been shown in this mathematical

derivations. The derivations are here, I am not repeating them, you can verify this that

these derivations are correct.

So, through these derivations it has been shown that this re-parameter or the

normalization and the reparameterization that we have done this is differentiable with

respect to the parameters gamma and beta. And because it is differentiable, I can use the

same gradient descent approach for tuning or for updating the gamma and beta values.

So, for doing that what I need is over here this l is the loss function.

So, what I need to compute is del l del gamma which is given by this, which is del l del y

i into x i hat, take the summation over all the samples in the batch that is i is equal to 1 to

m. Similarly, del l del beta which is the gradient of the error with respect to beta which is

nothing, but del l del y i. So, again you find that you are following the chain rule of

differentiation and you take the summation for I is equal to 1 to m.

So, once you have this then obviously, your updation rule will be gamma gets gamma

minus del l del gamma and the nu beta gets beta minus del l del beta. So, it is the same

gradient descent rule that can be applied in the back propagation learning stage for

updation of these new parameters gamma and beta. And they will be finally, tuned and as

a result what you are doing is you are normalizing the data at every layer whether it is

the input layer or any of the hidden layers.

And the purpose of this normalization is as we have seen that because of the covariate

shaped the distribution of data from batch to batch can vary widely, and the purpose of

this normalization this batch normalization is that it tries to make sure that even if the is a

shaped or covariate shaped the amount of shaped will not be match it will be within

limit.

And because of this during the training process your classifier or the classification rule

that you are generating through your deep neural network, the classifier will not hope

much from one to from one classifier classification boundary to another classification

boundary and as a result your training process will be much faster.

So, in today’s discussion what we have discussed is the batch normalization technique. In

the subsequent classes, we will talk about other classification techniques. And as we have

already said that the reference of other normalization techniques and as we have already

said that the difference in this normalization techniques is basically how do you compute

the mean and the standard deviation.

Thank you.

