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Hello, welcome back to the NPTEL online certification course on Deep Learning. Since

our previous class, we are discussing about the normalization and in the last class we

have  discussed  that  what  is  the  role  of  normalization,  what  we  need  normalization

techniques, so that your classifier design can be faster or the training of the classifier can

be faster and the classifier can be more stable. 
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Particularly, we have taken an example with the help of batch normalization techniques

or why we are going for batch normalization is; the classifier training is or the learning

process is in the form of batches.  So, the algorithm which is mostly used is what is

known as batch gradient descent or batch stochastic gradient descent approach. 

So, where for training of the classifier or training of the deep neural network, you feed

your training data into many batches where every batch contains may be say 10 training

examples,  15 training examples,  100 training examples  and so on that depends upon

whether your batch size will be small or batch size is large, ok.



So, we are assuming that we are given these two different batches and the problem that

we want to do address, so the classifier if classifies the flowers category from non-flower

category. So, when you give the batches,  the batches,  every batch will  contain some

images from the flower some images from non-flower. So, these are the two different

cases that have been shown here. On the left hand side we have batch 1 and on the, right

hand side we have batch 2. 

So, you find that the images of the flowers which are in the first batch they are not rich in

colour, they are mostly whitish whereas, images of the flowers which are in the second

batch or batch 2 they are very very rich in colour. So, as a result when you try to extract

the features out of these flowers which are whitish in batch 1 and which are very very

colourful  in  batch  2  the  distribution  of  features  of  the  flowers  in  batch  1  and  the

distribution of features of the flowers in batch 2 they are likely to be different.

So, as a result I can have a situation like this. So, in the first case, the flowers we can

have the  feature  distribution  something  like  this,  whereas,  non-flowers  could  have  a

distribution of features which are like this. So, these are the distribution features in the

non-flower category. As a result you find that your classifier boundary will be something

like this. 

Whereas, in the second case again because now the flowers are more colourful, so it is

quite possible that the distribution of features for the images belonging to flowers will be

something like this whereas, the distribution of features of the images which would do

not belong to the flower category may be something like this. So, as a result of that your

classification boundary will be something like this.

So, now we find that though your images belonging to the same category of flowers, but

because of their appearance the computed features may have different distribution. And

as  a  result  while  training  the  classifier  simply  hops  from  one  boundary  to  another

boundary. In some cases it will decide this boundary, in some cases it will decide this

boundary. So, as a result the time taken to train the classifier or the time taken to train

your deep neural network becomes very large.

So, this can be avoided if we can somehow normalize the feature vectors, so that the

distribution of all the feature vectors will belonging to the same class will be more or less



than.  And  the  kind  of  normalization  that  we  can  apply  in  this  case  is  a  type  of

normalization that we have already discussed.
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Say for example, for every feature or the set of feature vectors belonging to a particular

batch this is a set of feature vectors X, I can compute the mean of the feature vectors

which is mu X, I can also compute the standard deviation of the feature vectors which is

sigma X, and then I can normalize this X as X hat is equal to X minus mu X upon square

root of some epsilon plus sigma X square. 

And this  we have already discussed before that  this  epsilon is  a  very small  positive

quantity, this ensures that if this sigma X somehow becomes 0 I do not have a situation

of a unstable division; that means, I do not get a case of division by 0. So, this is a sort of

normalization that can be used. Now, you find that this sort of normalization what we

have discussed is with respect to the input because we are feeding the images to the input

layer. 

This is applicable not only in the input layer this is also applicable in the hidden layers as

well. Why should it be applicable to hidden layers? So, now, let us try to see that why do

we need normalization even in hidden layers. So, for to discuss about that to see why you

need normalization in the hidden layers, let us look at a typical architecture of a deep

neural network.
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So, the architecture of a deep neural network as we have already seen that it  will be

something like this that I have a number of layers, in every layer I have a number of

neurons which is like this, right and from every layer to every other layer I have a set of

parameters or set of weights. So, if this is my l-th layer this is my l minus first layer, this

is l plus first layer and so on. 

So,  from every  layer  say l  minus first  layer  the  activations  are  fed  to  the l-th  layer

through a set of parameters or through a set of weights. So, every node in the l-th layer



gets an weighted sum of the activations of the previous layer and then on this weighted

sum  it  performs  another  non-linear  operation  and  the  kind  of  non-linear  operation

function that we are considering in this case is ReLU non-linear function.

So, at the l-th layer you get an activation vector let me call it an activation vector say a l,

where it will be a l 1 from the first neuron a l 2 from the second neuron and so on. So,

those are the components of this activation vector. And this activation vector is fed to the

next layer to the that is l plus first layer that computes the activation l plus 1, which is fed

to layer say l plus 2 which computes a l plus 2 and so on.

Now, during training at the final output I have some activations say O at the final layer,

say O f, so this is the final output that I get from the output layer, ok. To make it clear

instead of O, let me use the term say my final output will be say some f at the final layer.

And during back propagation what you do is you compute your error at the output and

then  following  the  gradient  descent  procedure  in  the  backward  pass  you  pass  that

gradient to the layers from the output side to the input side and while doing so, in every

layer you go on updating the weight vectors or updating the parameter vectors. That is

what you do.

Now, when you come to the updation of or say come to this layer l only, you find that l

the layer l gets activations from layer l minus 1 which are say activations a l minus 1.

And based on the distribution of a l minus 1 you adjust these weight vectors of layer l.

Now, we find that if a l minus 1 is steady; that means, in every epoch the distribution of a

l minus 1 remains the same, then learning of the layer a l will not be any will not be a

problem because the distribution of a l minus 1 which is coming from l minus first layer

that remains the same.

But  what  happens?  That  during  this  training  process  this  layer  a  l  minus  1  is  also

updating its weights; that means, the weight vectors from layer l minus 2 to layer l minus

1 that is also being updated. The weight vectors from layer l minus 1 to layer l they are

also being updated. So, as a result this a l minus 1, the distribution of this may not remain

same over the epochs. So, even if you are feeding the same input in the same batch the

distribution  of  a  l  minus  1 the features  which are  computed  at  a  l  minus 1 may be

different in different epochs. So, leading to the same problem of covariate shaped.



So, even here, even in the hidden layers or the internal layers I have to take some action

so that this covariate shaped can be minimized. So, for minimization of this covariate

shaped as we have seen before that I have to go for normalization of these weight vectors

and in most of the cases what is tried is that you remap this vectors in such a way that the

mean of all these feature vectors become 0 with a variance or standard deviation equal to

1. 

So, with this introduction that I need normalization not only at the input layer on the raw

data, I also need normalization even at the hidden layer because the features which are

computed from different layers even for the same input over different epoch or different

training instances the distribution of those feature vectors may be different which I had to

take some measure to erased that shape of the distribution. So, this is how the covariate

shaped the problem of covariate shaped has to be addressed.
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So,  let  us  see  that  how  we  can  do  it.  So,  there  are  different  ways  in  which  this

normalization can be done, one of the technique is what is known as batch normalization.

You can also have what is known as layer normalization, you can have another technique

known as instance normalization or you can also have a group normalization techniques.

So, these are the different variants of the normalization techniques and we will see a bit

later that the main difference is the way you compute the mean and standard deviation.

So, first let us discuss about what is batch normalization. 
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So, in case of batches as we said earlier that you are feeding the inputs in batches, right

you have the inputs from both the positive class as well as negative classes. And in every

layer, so let us assume that we are now talking about some layer say l-th layer. In l-th

layer, we have assuming that this is a convolution neural network, in l-th layer I have a

number of convolution kernels. 

So, depending upon the number of convolution kernels there will be different channels of

features  which  are  computed  and  all  these  feature  channels  when  you  concatenate

together that becomes a feature map and this feature map is now then fed to the next

layer during the forward pass. So, let us assume that in a particular batch, so these are the

different  examples,  training  examples  which  are  provided  in  a  particular  batch  for

training of the deep neural network. 

And in the n-th layer every convolution kernel forms a feature and let us assume that the

number of convolution kernels in the l-th layer that we have is 5, so as a result I have 5

different feature components. Each of these feature components are of size say W by H

or W is the width of the feature map and H is the height of the feature map.

So, finally, the feature map which goes to the next layer or l plus first layer that becomes

a tenser. This tenser have 5 channels which is same as the number of convolution kernels

that I have and the size of each of these channels depends upon how you compute the



convolution,  whether  it  is  with stride or without  stride and how do you perform the

pooling operation, ok.

As  we  said  that  pooling  is  nothing,  but  pooling  eventually  gives  you  a  sort  of

dimensionality  reduction  or  data  reduction  of  the  features  that  you  compute.  So,

assuming over here that a particular batch has got say this 4 different images, training

images, I have these 4 different feature maps, where every feature map has got certain

number of channels and every channel has certain width and certain height. So, this is the

kind of feature maps that you get which are to be fed to the layer l plus 1. 
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Now, what you do in case of batch normalization? In order to explain that let me arrange

the feature maps or the channels in this form. So, over here in the horizontal direction

what I put is the different training examples in a given batch say B. So, these are the

training examples in a given batch.  And in the vertical  axis what we have put is the

different channel indices, so obviously, the number of such channels that you have as we

said is same as the number of convolution kernels. 

And each of this channel has a size it has an width W and height H, so that is the size of

every channel and all these channels being concatenated together gives over the feature

map, ok. So, N actually gives you what is the batch size. I have N number of examples

training examples in a particular batch and C is the number of channels and W and H is

the width and height of every channel. 



So, let us organize our feature map something like this. And this will help us to explain

how  the  different  types  of  normalizations,  the  batch  normalization,  instance

normalization, layer normalization, group normalization and all that they work. 
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So, first we are talking about the batch normalization. In case of batch normalization,

what you do is you collect all the identical channels from all the training examples in the

same batch and group them together. So, here what we have done is, so if I put this as

say channel number 0, this is channel 1, channel 2, channel 3, channel 4 and so on. 

So, this is channel 0, channel 1, 2, 3, 4 and so on, you find that in this group we have

made a group of channel 0s computed from all the training examples. This is a group of

the features in channel ones from all the training examples. This is the group of features

from channel 2 from all the training examples.

And then when you compute the mean and standard deviation, you compute one mean

for this and one standard deviation for this, say this is mu 0 and standard deviation 0, I

am putting it as subscript 0 because they are computed for from the 0th channel. This

may be mu 1 sigma 1, this may be mu 2 sigma 2 and so on. 

So, these two parameters mu and sigma are computed from identical channels the same

channels over all the training examples and that is how you compute the mean and sigma



in channel in the batch normalization technique. And using this mean and sigma values

you go for normalization of the data. So, let us see how this is done. 
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So,  basically  when you are computing  the mean of a  particular  channel  this  is  your

expression say x i  C j  k.  So,  this  x  represents  one feature element  in channel  C,  at

location j k in that particular channel feature and the number of such channels or the

number of training examples that we have is total N. So, mu C that is the mean of a given

channel is given by x i C j k, where i and j, I said are the column and the row index

within a single channel, ok.

And sorry j and k represents the row and column index within a given channel C and i is

the index of the number of training examples that you have. So, the way you compute the

mu C, mu for a particular channel is given by this expression. In the same manner, you

compute  the  variance  that  is  sig  sigma C square  over  following the  same indices  it

becomes x i C j k minus mu C square of that and you sum it over i j and k and then we

normalize with N W and H and that becomes the variance for channel C. 

And using this variance you go for normalization as we said before, so your normalized

feature value x hat now becomes x minus mu C upon square root of epsilon plus sigma C

square. So, this is your normalized value.
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So, as a result if I can put it in another form also all the channels put together can be

represented as a vector. So, what I do is, I compute the mean vector mu p over a batch

which is given by x i, i varying from sum of x i, i varying from 1 to m and then you

normalize with respect to m. So, in this expression m is the number of examples that you

have within the batch or the number of training examples within the batch.

In the same manner, you compute sigma squared within a batch that is sigma B square

and  then  you  normalize  x  i  with  respect  to  this  mu  B and  this  sigma B.  So,  your

normalized value becomes x i hat which is x i minus mu B upon square root of epsilon

plus sigma B square. So, this is what is your normalized value. 

So, once you do that you find that all these normalized features that is x i hat or the

collection of x i hat will have a mean value equal to 0 because from every x i have

subtracted mu B which is the main vector, ok. And then you have divided you have

normalized with respect to the standard deviation which is sigma p. So, as a result all x i

hat we will have mean 0 and standard deviation 1.

Now, we find  that  there  is  one  problem if  on every  data  I  map it  to  or  I  do  some

transformation this normalization, so that for all type of data your mean is 0, standard

deviation is 1. Then you find that the data or the this new distribution, the redistributed

data loses its class identity because every data now have the same distribution that is



mean 0 and standard deviation 1. So, which is not actually good for your classification

purpose.

In classifier classification, every distribution should retain its class identity. So, in order

to do that you are not only satisfied with the normalization with respect to mu and sigma,

but what you need is you need some sort of reparameterization. So, this x i hat that you

get this  is  now reparameterized.  So, what you do is from this  x i  hat you map it  to

another data y i, where y i is gamma x i hat plus beta; where this gamma and beta. So,

now, gamma  becomes  the  standard  deviation  of  this  reparameterized  data  and  beta

becomes the mean of this reparameterized data.

And that is what your batch normalized output. So, this batch normalized output, so this

new distribution that we are generating that has two parameters one is gamma, other one

is beta. And this both this beta and gamma are trainable or tuneable. So, while you train

your neural network for the parameter vectors or weight vectors during gradient descent

procedure at  the same time you also train the neural network to tune these two new

parameters which are gamma and beta. 

And these two new parameters as they will be tuned with your input data during the

training process, these two parameters will retain the class identification which will be

subsequently helpful for classification of the data. So, how that is done?
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So, you put that over here. So, what I need is if I want to tune this parameters gamma

and beta during for our gradient descent approach following the in the backpropagation

learning technique; obviously, I need to get the gradient of the output error with respect

to  this  gamma and beta.  And you find that  as has  been shown in this  mathematical

derivations. The derivations are here, I am not repeating them, you can verify this that

these derivations are correct.

So,  through  these  derivations  it  has  been  shown  that  this  re-parameter  or  the

normalization and the reparameterization that we have done this is differentiable with

respect to the parameters gamma and beta. And because it is differentiable, I can use the

same gradient descent approach for tuning or for updating the gamma and beta values.

So, for doing that what I need is over here this l is the loss function.

So, what I need to compute is del l del gamma which is given by this, which is del l del y

i into x i hat, take the summation over all the samples in the batch that is i is equal to 1 to

m. Similarly, del l del beta which is the gradient of the error with respect to beta which is

nothing, but del l del y i. So, again you find that you are following the chain rule of

differentiation and you take the summation for I is equal to 1 to m.

So, once you have this then obviously, your updation rule will be gamma gets gamma

minus del l del gamma and the nu beta gets beta minus del l del beta. So, it is the same

gradient  descent  rule  that  can  be applied  in  the  back propagation  learning stage  for

updation of these new parameters gamma and beta. And they will be finally, tuned and as

a result what you are doing is you are normalizing the data at every layer whether it is

the input layer or any of the hidden layers. 

And the purpose of this normalization is as we have seen that because of the covariate

shaped the distribution of data from batch to batch can vary widely, and the purpose of

this normalization this batch normalization is that it tries to make sure that even if the is a

shaped or covariate shaped the amount of shaped will not be match it will be within

limit. 

And because of this during the training process your classifier or the classification rule

that you are generating through your deep neural network, the classifier will not hope

much from one to from one classifier classification boundary to another classification

boundary and as a result your training process will be much faster.



So, in today’s discussion what we have discussed is the batch normalization technique. In

the subsequent classes, we will talk about other classification techniques. And as we have

already said that the reference of other normalization techniques and as we have already

said that the difference in this normalization techniques is basically how do you compute

the mean and the standard deviation.

Thank you.


