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Hello welcome back to the NPTEL online certification course on Deep Learning. For last

few lectures we are discussing about various techniques  for improvement of gradient

descent algorithm or gradient descent algorithm is nothing, but the algorithm of training

of the neural network or deep neural network that we are talking about. So, so far we

have  discussed  about  the  momentum  optimization  technique  which  optimizes  the

gradient descent algorithm, we have also talked about the Nesterov accelerated gradient

based optimization technique and we have also talked about  the Adagrad.  So, in our

previous class we have talked about the Adagrad algorithm in particular.

(Refer Slide Time: 01:13)

So, in today’s class we will talk about two more algorithms, one of them is RMSProp

and the other one is Adam and we will also see a very closely related algorithm which is

very closely related to RMSProp.



(Refer Slide Time: 01:33)

So, as we have seen in the previous class the Adagrad algorithm is given something like

this, that at time t you compute the batch gradient; gradient of the loss function with

respect to the weight vector or with respect to the parameter vector. And, then what you

do is,  you go on accumulating the squared gradient  or you take the sum of squared

gradient of all the historical gradient values and this sum of squared gradient is used to

scale the gradient of all individual locations. 

So, as a result our upgradation or weight upgradation algorithm that we have seen earlier

is given by this expression, where if W t is the parameter vector or weight vector at time

t. Then at time t plus 1 we get our updated weight vector as W t minus eta upon square

root of epsilon I plus r t times g t where, these operations are actually done element wise;

that means, whenever I rewrite 1 over squared root of epsilon I plus r t. So, for individual

components this will actually be 1 over square root of epsilon plus r t i. So, this is the

sum of the squared gradient; sum of the squares of the ith component of the gradient

vector  and you take  the  square  root  of  this  and times  g  t;  that  means,  this  will  be

multiplied by corresponding ith component of the gradient g t and that will be added with

the ith component of W t.



(Refer Slide Time: 03:40)

So in fact,  your  expression  will  be  that  if  I  go for  component  wise  W t  plus  1  ith

component will get W t ith component of this minus eta by square root of epsilon plus r t

i times g t i. So, this is the component wise operation that you perform, and here you find

that you are basically scaling the ith component of the gradient vector by square root of

sum of squares of the corresponding component of the gradient vector. And, what you

are  taking  the  summation  over  all  the  previous  the  gradient  values  or  the  partial

derivative values that has been computed. So, this is sum of all the historical values.

And, this  is  what  is  actually  scaling the ith component  of the gradient  vector  which

effectively is updating the ith component of the weight vector or the parameter vector.

So, what is the effect of the scaling is that if for certain component say for W i you find

that del L del W i which is nothing, but our g t i. So, if this del L del W i is very large

then this corresponding r t i will also be very large. So, as a result 1 upon square root of r

t i which will be small and that is making your learning rate of the corresponding ith

component of the parameter to be small. And, if this is small; r t i is small and then the

corresponding learning rate of the ith component of the parameter vector will also be

large.

So, this is how Adagrad algorithm is adaptively tuning the learning rate of individual

parameters or individual weight components of the weight vector.
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So, we have also seen that what are the positive points of this Adagrad algorithm. So, the

first positive point is it adaptively scales the learning rate for different dimensions by

normalizing with respect to the gradient magnitude in the corresponding direction. So, if

the gradient magnitude in a particular direction is more the learning rate in that direction

will reduce or as if the gradient component in a particular direction is small, the learning

rate in that particular direction will not reduce that much. So, that is how you adaptively

tune the learning rate in different directions. 

And you do not have to manually set any of the hyper parameters. So, initially we have

the initial learning rate given by eta, but once we fix that is final; we need not update it

anymore. And, as a result the learning it becomes faster and you quickly converts to the

minima of the error function. So, these are the positive points of the Adagrad algorithm.
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And, the negative point is if the function is non-convex which is quite possible given

your  high  dimensional  space  in  which  the  error  function  is  defined,  then  while  the

algorithm proceeds the trajectory of the weight vector or the parameter vector may pass

through  many  complex  terrains  before  coming  to  a  locally  convex  region.  So,  the

moment  it  comes  to  locally  convex region,  we want  that  the  algorithm will  quickly

converse to the minima of this locally convex region.

But, because the learning rate is being gradually reduced it is being scaled by square root

of the sum of the squares of the corresponding partial derivative. And, this summation is

taken from t equal to 0, it is actually accumulative and this being sum of the squares it

always goes on increasing, it does not reduce at all. So, as number of iterations proceeds

your scaling factor that is 1 upon square root of epsilon plus r that will go on increasing.

And, as a result your learning rate may become very very small with time and in some

cases the machine may stop learning at all. So, that is the problem of Adagrad algorithm. 

So, let us see that how the other suggested algorithms take care of or try to solve this

problem which is given by Adagrad. So, the algorithm that we will talk about is what is

RMSProp which tries to address this problem of Adagrad algorithm that is vanishing

learning rate as the time increases as the number of iteration proceeds.



(Refer Slide Time: 08:44)

So, what is this RMSProp algorithm does is instead of taking the accumulative sum of

squares of the gradients of the sum of the squares of the past and gradients or this past

gradient starts from time t equal to 0. So, your basically the operation that was done in

Adagrad algorithm is r t, the scaling factor which is 1 upon square root of epsilon plus r t

i. So, if you go for component wise this r t i is nothing, but sum of g t i square of this or

let me put it as g tau square instead of g t g tau square and you take the summation of tau

is equal to say 1 to t. So, you find that this being a square term and which you are going

on adding. So, r t goes on increasing, it monotonically increases (Refer Time: 09:57), it

does not reduce.

So, that is the problem with the Adagrad algorithm and in case of RMSProp instead of

using  this  cumulative  or  acumulative  sum of  squared  gradients  the  RMSProp  takes

exponentially decaying average of the squared gradient. And, it does not consider the

extreme past histories while accumulating the sum of square gradient. And, as a result of

this the algorithm converges rapidly, once it reaches once your vector reaches locally

convex ball short of surface that (Refer Time: 10:41). And, what you can do is we can

assume  this  point  once  it  reaches  that  locally  convex  error  surface,  that  as  if  your

Adagrad algorithm is initialized at that point within that locally convex ball.

So, that is what the RMSProp does, RMSProp does not take the accumulative sum of

squared  gradients  from  the  very  beginning,  but  it  takes  an  exponentially  decaying



average of squared gradient.  Now, let  us see that what is this exponentially decaying

squared gradient.

(Refer Slide Time: 11:34)

It is something like this, the suppose we have a sequence of numbers or sequence of

samples given by say s 1 s 2 s 3 s 4, it goes on s i s i plus 1 and it goes on like this. So, it

goes  on with time t.  So,  the exponentially  decaying average,  exponentially  decaying

average  is  defined  like  this;  I  want  to  define  say v  t  at  time  instant  t  which  is  the

exponential decaying evidence. This will be same as beta times v t minus 1, where v t

minus 1 was the exponentially decaying average at time t plus t minus 1 plus 1 minus

beta times s t  and this  is initialized to say v 0 is equal to 0. So, you start  with this

initialization.

So, once I initially v 0 is equal to 0; that means, v 1 will be beta times v 0 plus s 1 and

because plus 1 minus beta times s 1. So, because v 0 is equal to 0; so, effectively you get

v 1 is equal to 1 minus beta times s 1; at time t equal to 2 I get v 2 which is nothing, but

beta times v 1 plus 1 minus beta times s 2 and this v 1 is nothing, but 1 minus beta times

s 1. So, this will simply be 1 beta into 1 minus beta times s 1 plus 1 minus beta times s 2,

similarly v 3 will be beta times v 2 plus 1 minus beta times s 3. So, you find that in this

term beta times v t minus 1 this term is weighted, I mean I have an weighting component

which is beta into beta square into beta cube and so on.



And, then beta is actually less than one a typical value of beta is taken to be 0.9 so, 1

minus beta will be 0.1. So, all the previous sample values as I go as I compute say s 50

the previous sample values the effect of s 1 s 2 s 3 and so on, that will go on reducing

exponentially. And, that is the advantage of taking the exponentially decaying average of

the square gradients and this is what is used in case of RMSProp problem. So in case of

RMSProp, the scaling factor is not the cumulative sum of gradient histories, but it is the

exponentially decaying average of the squared gradients.

(Refer Slide Time: 15:01)

So, if I go to the updation algorithm is in RMSProb, the updation algorithm will be like

this; you will find that you will compute the gradient in the same way as we have done in

case of Adagrad, right. So, this is the gradient computed over a batch and then in order to

compute  r  t  this  is  not  the  sum  of  the  previous  squared  gradients,  but  it  is  an

exponentially decaying average of the squared gradients ok. So, this g t into g t this gives

you the squared gradient which is initialized to 0. So, this expression that r t is equal to

beta times r t plus 1 into 1 minus beta times g t into g t, this gives you the exponentially

decaying average of g t square.

And, then you are update algorithm that is W t is equal to or W t plus 1 is equal to W t

minus eta by square root of epsilon plus r 1 epsilon I plus r t plus g t this algorithm

remains  the  same  as  in  case  of  Adagrad.  So,  only  difference  is  this  r  t  is  not  the

cumulative sum of squared gradients, but this r t is the exponentially decaying average of



the squared gradients. And we said that there is a very closely related algorithm very

closely related to this RMSProp; so, that closely related algorithm is what is known as

AdaDelta.

(Refer Slide Time: 16:44)

So, we have a closely related algorithm known as AdaDelta. So, what AdaDelta does is

in case of RMSProp you are taking the exponentially decaying average of the squared

gradient;  AdaDelta  instead  of  taking  the  exponentially  decaying  average  of  squared

gradient it computes the moving window average. So, you can take a more window size

of say W. So, when you compute v t, v t is computed over a past window size of W. So, if

I take the window size W is equal to say 5, in that case in order to compute say v 10 it

will take the first 5; that means, it will take v 10 v 9 v 8 v 7 and v 6 or the say s 6 s 7 s 8 s

9 and s 10. So, the average will be computed over this window of 7. 

Similarly, when you compute so, this is what is your v 10, when you compute v 11, I

have s 11 which is the next sample, the average will be taken over s 7 s 8 s 9 s 10 and s

11 that will give you the average of 11. So, you are computing average over past samples

which are within this window size of W. So, this is what is moving window average. So,

you find that  this  RMSProp which takes  expose exponentially  decaying average,  the

AdaDelta takes a moving window average of the squared gradients. So, that is the only

difference between RMSProp and AdaDelta.  And in fact,  both these algorithms were



proposed  almost  simultaneously,  but  independently,  and  both  of  them  gives  almost

similar performance.

(Refer Slide Time: 18:59)

So, this is what is you are RMSProp algorithm, you can also improvise upon RMSProp

algorithm with an Nesterov of momentum term. So, as we have seen that in case of

Nesterov of accelerated gradient technique you take the gradient not at location W t, but

you  take  the  gradient  at  a  loop  ahead  position.  So,  assuming  that  your  previous

momentum term is v, you are looking ahead at location W t plus alpha times v and you

are taking the gradient at that location W t plus alpha times v instead of computing the

gradient at location W t.

So, that is what your Nesterov accelerated gradient is. So, you are instead of computing

the gradient at location W t, if I take the gradient at location W delta where, W delta is

the position or to loop ahead position. And, rest of the algorithms remains the same; so, it

is as before you are taking the exponentially decaying average of the sum of squared

gradients, exponentially decaying average of the squared gradients and then your update

rule remains as before ok. So, this is what is RMSProp, which is part that improvised

with Nesterov of momentum. 

So, given this algorithm now the other algorithm that we said that we will be talking

about is what is known as Adam or adaptive moments.
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So, what is this Adam algorithm? Adam algorithm you can consider this to be variant of

the combination of RMSProp and momentum. So, in case of RMSProp we did not have

any concept of momentum. So, here we can incorporate both the first order momentum

and the second order momentum. Second order momentum is nothing, but the sum of

squared gradients or exponentially decaying average of the squared gradients as in case

of RMSProp which is used for scaling the learning rate in individual directions. And,

along with that  if we add the momentum term, where the momentum will  be scaled

according to the square root of the exponentially decaying average.

So, if I use both this first order momentum and second order momentum because sum of

squared  gradients  is  nothing,  but  average  of  the  squared  gradients  is  nothing,  but

equivalent to your second order momentum. So, you use both this first order and second

order moment that becomes a variant of RMSProp and this is what is known as Adam. 

So,  in  case  of  Adam  you  are  including  both  first  and  second  moments  for  weight

updation or parameter updation and in addition you Adam incorporates one more term,

that it tries to correct the bias to account for initial to zero. So, what he said is that when

you are taking exponentially decaying average, you are initializing the average value at

zero at t equal to zero, right.
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So, for this exponentially weighting average what we did is we have computed v t is

equal to some beta times v t minus 1 plus 1 minus beta times s t. So, when you go for

exponentially  decaying average of the squared gradients  this s  t is  nothing, but your

gradient del L del W square of this. So, here what we are doing is you initialize v 0 to 0;

so, as a result all the computations that you are performing; particularly the computations

at the initial sample levels that equal to 1 t equal to 2 and t equal to 3 and so on; all of

them  are  actually  biased  toward  0.  So,  in  order  to  avoid  this  bias  what  this  atom

algorithm does is, it goes for correction of the bias term.

(Refer Slide Time: 23:36)



And,  the  correction  is  done  by  dividing  the  computed  values  or  the  exponentially

decaying average values by 1 minus beta. So, the operation is something like this. So, as

before you compute the gradient over a batch at time t which is g t then you compute the

first and or exponentially decaying average of the first and second moment of g t. So, the

exponentially decaying average of the first moment of g t is given by s t is equal to some

beta 1 times s t minus 1 plus 1 minus beta 1 times g t.

And, the second moment exponentially decaying average of that is given by r t is equal

to some beta 2 times r t minus 1 plus 1 minus beta 2 times g t square which in this case is

written as g t into g t. And, we have said that this particular symbol small square this is

used  to  represent  element  wise  multiplication.  And,  as  we  said  before  that  this

exponentially decaying average that you have computed, it is biased towards 0 because

at t equal to 0 both s t and r t that is s 0 and r 0 were initialize to 0.

(Refer Slide Time: 25:07)

So, in order to take care of this bias the Adam algorithm goes for bias correction and for

bias correction it takes s t hat which is the bias corrected first moment which is s t upon 1

minus beta minus; 1 upon 1 minus beta 1 ok, but the computation of was s t like this, s t

was beta 1 times s t minus 1 plus 1 minus beta 1 times s t. So, after correction it becomes

s t upon 1 minus beta 1. So, this corrected first moment is represented as s t hat, similarly

the corrected second moment which is r t hat is nothing, but r t by 1 minus beta 2.



So, once given this your weight updation of the parameter updation rule simply becomes

W t plus 1 is equal to W t minus eta times t hat, where s t hat is the bias corrected first

moment upon square root of epsilon I plus r t hat, where r t hat is the bias corrected

second moment. So, you find that this is nothing, but similar to your RMSProp algorithm

where you are incorporating where,  this Adam algorithm incorporates bias correction

operation and it also incorporates the first moment in the update step. So, this is eta times

s t hat where, s t hat is the first moment of the gradients. So, this is your Adam optimizer

which optimizes the gradient descent operation.

(Refer Slide Time: 26:59)

So, now we can compare with this animation, you can see that I can compare the relative

performance of different optimization algorithms. So, as you see over here this red curve,

the red curve is actually the pure SGD algorithm or Stochastic Gradient Algorithm, the

blue one gives you the momentum. Then you have NAG Nesterov accelerated gradient

operation, then you have Adagrad, then you have a Adadelta, then you have RMSProp.

So, you find over here that  the SGD which you find that  it  is still  diver converging

whereas, the other algorithms have already come first.

And as we have seen before that your momentum and the NAG as we said that, NAG

that is Nesterov of accelerated gradient gives slight improvement over momentum, right.

So, you find that these two green and the pink one they represent a momentum and NAG

optimization and they are very close. 



So,  we  have  discussed  about  the  various  optimization  techniques,  where  this

optimization  techniques  tries  to  improve  the  learning  rate  given  by gradient  descent

algorithm. So, we will stop here today and will talk about how the other challenges that

you  get  in  gradient  descent  or  the  learning  algorithms  of  deep  neural  networks  are

addressed by different approaches in our future lectures.

Thank you.


