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Hello, welcome back to the NPTEL online certification course on Deep Learning. So, for

last few lectures we are discussing about the optimization procedures of gradient search

technique. And as you know that gradient search itself is an optimization algorithm or

gradient descent is itself is an optimization algorithm, which tries to minimize the error

function by updating the weight vectors in deep neural network. But this gradient descent

algorithm  faces  a  kind  of  challenges  like  a  vanishing  gradient  problem,  then  slow

learning rate. 

So, in order to solve these algorithms, there are different optimization techniques which

have  been  suggested.  And  the  aim  of  such  optimization  techniques  is  to  make  the

gradient descent algorithm or learning algorithm make it faster make it more efficient.

(Refer Slide Time: 01:33)

So, in our previous class, we have talked about two such optimization algorithms, one of

them was momentum optimizer and the other one was Nesterov Accelerated Gradient or

NAG.  In  today’s  lecture,  we  will  try  to  discuss  about  what  are  the  drawbacks  of

momentum  optimizer  as  well  as  the  drawbacks  of  Nesterov  Accelerated  Gradient



techniques. And we will see that how those drawbacks can overcome in other algorithms

which have been suggested like Adagrad, RMS prop there are other algorithms like adder

delta, then adam. So, we will discuss these algorithms one after another and we will try

to see that what is the relative performance of these algorithms when you come across

different challenging error surfaces. 

(Refer Slide Time: 02:37)

So, before we go to Adagrad, let us try to see that or try to recapitulate what we did in

our  previous  class.  So,  in  the  previous  class,  we  have  talked  about  the  momentum

optimizer  technique  which  obviously  at  enhancement  which  is  an improvement  over

simple gradient descent algorithm. So, what is this momentum optimizer?

You find what he said that if we have an error surface whose curvature or the rate of

gradient in some dimension is very high, whereas in some other dimension the curvature

is  very low. Or, in  other  sense that  if  I  take the gradient  in  one  dimension and the

gradient in another dimension in one of the dimension that gradient is very high, whereas

in  another  dimension  the  gradient  is  very  low.  In  such  case  the  gradient  descent

algorithm of  the  base  gradient  descent  algorithm finds  a  difficult  to  navigate  to  the

minimum error point. So, in momentum optimizer that is what is being addressed.

So, let us see what we discussed in previous class the momentum optimizer, let us have a

quick recapitulation of that. So, what you have in momentum optimizer is suppose I have

initialized the weight vector somewhere over here. So, simple gradient descent algorithm



what I will do is, it will find out the gradient of the error at this initial position let us call

it to the initial position W 0, in the vertical direction or in the direction of W 1 as well as

in the direction of W 2. And as you see over here its gradient direction in the vertical

direction will be very high, whereas so, you find that the gradient direction in the vertical

direction will be very high, whereas the gradient direction in the horizontal direction will

be very low.

As a result what will happen is that gradient descent algorithm will try to adjust or we

will try to update the weight vector in such a way that the weight vector moves in this

direction, whereas, you find that the minimum error is somewhere over here. So, we are

going we are not moving in the right direction to minimize the error. In the same manner

in the next iteration, the weight vector will be moving in this direction, then the weight

vector will be moving in this direction, then the weight vector will be moving in this

direction and so on. So, as a result that you are find out finally you find that you are

oscillating around the right path which should have been followed, because over here it

would have been correct to move in this direction not to oscillate like this.

So, this is where the momentum comes to the rescue. So, in case of momentum, what

you would do is you again find out the gradient at this location. So, this is my position W

0 at time 0. And suppose at time W 1 the weight vector has come somewhere over here.

So, this was the movement at time W t minus 1, suppose the weight vector has come

somewhere over here. So, this is what I have W t minus 1.

And  while  coming  over  here  the  previous  shift  or  the  previous  update  was  in  this

direction. So, what momentum does is, now momentum computes two terms one is its

movement or updated due to the momentum because of the previous movement, and the

gradient at location W t minus 1. So, if you do that you find that in the momentum as

before will be somewhere over here suppose the previous upgrade value was v t minus 1.

So, under the influence of this momentum, now this update direction will be say gamma

v t minus 1 that is what is the gradient component. And coming to this is what is the

momentum  component  and  coming  to  the  gradient  component  that  gradient  will  be

somewhere in this direction. 

So, because of this under the influence of these two, the gradient and the momentum, the

net displacement or the net updation of the weight vector will be in this direction which



is actually the sum of the momentum term and the gradient term, and this is what is your

v t. And under influence of this your weight vector is moving over here which is W t. So,

you find that in absence of the momentum term the weight was moving in this direction,

whereas weight  momentum the weight  is  moving in  this  direction.  So, it  has shifted

slightly towards the minimum value. So, this is the advantage of momentum optimizer.
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Now coming to; so under the influence of this if I simply have the stochastic gradient

descent optimization algorithm appear stochastic gradient descent gives you the updates

which is as given over here. Whereas, if I have the stochastic gradient with momentum,

the object moves will be something like this. So, you will find that this momentum term

actually is improving the learning rate or the algorithm will learn faster and will move

towards the minimum error value for in a faster way. 

Now, once we have this momentum then what Nésterov Gradient Accelerated gradient

does is, it computes the gradient not at the location of W t, but or at location W t minus 1.

But at location t W t minus 1 based on the momentum it tries to find out what will be its

future  position  or  it  tries  to  look ahead,  and at  that  future  location  it  computes  the

gradient value.
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So, the operation is something like this. Say for example, if we are at this location at say

time W t minus 1, say at time W t minus 1, this was the position of the weight vector.

And to come to this position it had made the previous update as v t minus 1. So, under

the influence of momentum, now the movement or the future position which can be

computed is say somewhere over here. This will be say gamma times v t minus 1. And

only under the influence of this momentum, the position of the weight vector at time t

will be over here which is W t. 

So, if I simply use the momentum with gradient, gradient descent with momentum what

will be computed is the gradient term will be computed over here, and the sum of these

two  would  have  been  the  update  in  the  weight  vector.  But  in  Nesterov  Accelerated

Gradient  descent  instead  of  computing  the  gradient  term  here  that  gradient  term  is

computed over here, and your movement or the update is in that direction of gradient at

this location. So, you find that when you add the when you have the look ahead gradient

as in the accelerated gradient algorithm, you are moving faster to your minimum error

position.



(Refer Slide Time: 11:47)

So, now if I illustrate on this diagram, suppose your position at time W t minus 1 over

here, so this was W t minus 1 and this was your the momentum term which is gamma v t

minus 1, then you are computing the gradient at this location. So, you are moving faster

towards the minimum error value. In the previous case, if you are if you do not use this

accelerated  gradient,  the  gradient  would  have  been  computed  over  here,  and  the

movement would have gone in this particular direction and that is for how the weight

would have been updated. So, this Nésterov Accelerated Gradient further improves the

momentum optimization.

(Refer Slide Time: 12:42)



However, both of these momentum optimizer and NAG optimizer suffers from certain

problem. So, what are the problems the problems are in case of both the algorithms, we

required in the hyper-parameters, and this hyper-parameters are to be set manually. So,

what are these hyper-parameters let us try to see that what these hyper-parameters are.

(Refer Slide Time: 13:05)

In case of momentum optimization, how we have optimized the weight your W t plus 1

or  let  me  put  it  as  W t.  W t  was  W t  minus  1  plus  we  had  the  momentum term,

momentum term was gamma v t minus 1 minus we had this gradient term which is some

eta  times  gradient  of  my  loss  function  L,  where  the  law gradient  is  computed  with

respect to weight W and it is computed at location at W t minus 1. So, I have two hyper-

parameters, one is this gamma and the other one is eta. So, these two hyper-parameters

are to be sat set manually in case of momentum optimizer.
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And what do you get in case of nesterov gradient descent, in case of nesterov gradient

descent the W t minus or W t gets, W t minus 1 plus we have the same momentum term

gamma times  v t  minus 1 minus now you take the gradient,  but the gradient  not  at

location W t minus 1, but you are taking gradient at W t minus 1 plus gamma times v t

minus 1, and I have the rate of convergence which is eta. So, here again I have these two

hyper-parameters which are preset manually. So, this is one of the drawbacks of both the

momentum optimizer as well as Nesterov Accelerated Gradient algorithm. 

The these  hyper-parameters  actually  decide  what  is  your  learning rate.  If  the  hyper-

parameters are too high, the learning rate will be fast; and if the hydrometers are too low,

the learning rate will be slow. And it is the same learning rate both in case of momentum

as well as in case of Nesterov Accelerated Gradient is the same learning rate which is

used in all the dimensions. But in actual scenario in high dimension and non-convex

nature of loss function, it is quite possible that your loss function will be more sensitive

in certain  direction,  and it  will  not  be so sensitive  in  some other  dimension.  Or the

gradient in some dimension will be quite high and the gradient in some other dimension

may be very low.

So, as a result your algorithm may require that learning rate be small in the direction of

higher gradient, and it may be high in the direction of lower gradient. So, these are the

different problems of momentum as well as Nésterov Accelerated Gradient technique.



And such problems are actually addressed in allow another algorithm which is known as

Adagrad. So, what is this Adagrad algorithm?

(Refer Slide Time: 16:47)

The  Adagrad  algorithm  it  tries  to  adaptively  scale  the  learning  rate  in  different

dimensions. So, now the learning rate is not same in all the dimensions, the learning rate

in the dimension say in the direction in the dimension of W 1. We have seen earlier that

in  the  vertical  direction  the  gradient  was  very  high  when  we  were  explaining  the

momentum optimizer technique. We had seen that that gradient in the vertical direction is

very high and that gradient in the horizontal direction was very low, as a result your

learning rate in the vertical  direction was high and the learning rate in the horizontal

direction  was low. And that  is  the  reason when you update  the  weight  vectors,  this

updation  technique  was  I  mean  the  updated  weight  vectors  was  actually  oscillating

around the correct path that should have been taken.

So, in case of Adagrad, it can adaptively tune the learning rate in different directions. So,

in the vertical direction, it will try to reduce the learning rate, whereas in the horizontal,

in  the  horizontal  direction,  it  will  try  to  enhance  the  learning  rate.  And  the  scale

parameter or the scale factor to scale the learning rates in different dimensions, they are

actually  proportional  to  the  square  root  of  sum  of  historical  squared  values  of  the

gradient. We come to see come to come to this when we explain this algorithm with the

help of what are the mathematical equations that we have.



And as a result the parameters which have the largest partial derivative, because it is

being scaled with the sum of squares of historical gradient values, so the parameters that

have very large partial derivatives of the loss function along those directions the learning

rate will decrease rapidly. And the parameters with small partial derivatives along those

directions, the learning rate will the rate of decrease of learning rate will be very small,

so that is how adaptively the Adagrad algorithm can scale the learning rate in different

dimensions. 

(Refer Slide Time: 19:13)

So, let us see what this Adagrad algorithm is. So, again in Adagrad algorithm, you have

to compute the gradient at location W t, where X is your input vector. And because we

are talking about the batch gradient descent algorithm, we are trying to improvise upon

batch gradient descent algorithm. So, whatever we are computing, all these computations

we are with respect to the batch of training samples that you have. 

So,  if  I  have  say n number of  samples  in  a  mini  batch  used for  training  the  neural

network, the deep neural network, the gradient at time instant t when my weight vector is

at time W t. So, I have to compute what is the loss and I have to take the gradient of this

loss with respect  to weight vector  and this gradient  has to be computed over all  the

training samples in the mini batch, and you have to take the average of those gradients

which are computed over all the training samples with respect to the weight at time W t.



So, this is the gradient you are computing and this gradient is say g t, whereas I said that

g t is computed over the mini batch at time instant t or with weight vectors as W t. And

then you compute the square of the different components of this gradient and then you

sum them up. And this summation has to be done over tau is equal to one to the current

time instant, which is t. This particular computation, so g tau is indicates of the variable t

the subscript t has been replaced by tau indicating that it is my index over which the

summation has to be computed. And this particular notation g t, then the small g tau, and

then  this  small  circle  over  here,  the  small  circle  indicates  the  component  wise

multiplication.

(Refer Slide Time: 21:42)

Or in other words what I mean by that is say if I have two vectors A and vector B where

vector A has components the a 1 a 2 up to say a d these are the components, and vector B

also has components a b 1 b 2 up to say b d, where d is the dimensionality of the vectors,

then this operation component wise multiplication it is nothing, but a 1 b 1 a 2 b 2 a d b

d. So, this is what this notation indicates.

So, given this now let us go back. So, this r t it actually accumulates the sum of the

squares of component wise multiplications of the products, and it is accumulated over

time starting from t equal to 0 to t equal to t. And when you are updating the weight

vector, your updation equation is W t plus 1 is equal to W t minus eta times g t upon

epsilon I plus r t. So, this I is a vector where all the components of the vector is equal to



one and this r t is the vector which is given by this. So, again when I am in showing this

particular expression that square root of sigma or square root of epsilon I plus r t, this

actually means square root of epsilon plus r 1 for t equal to 1, it means square root of

epsilon plus r 2 and so on.

(Refer Slide Time: 23:45)

So, going by this your actual updation when I expand this equation the actual updation

equation is given by this. So, you find that W 1 is actually being updated a W t plus 1 1 is

actually updated as W t 1 minus eta by epsilon plus r t 1 square root of that times g t 1.

So, it is only the first component of your weight vector which has been updated and the

scale  factor  of  the  learning  rate  or  the  first  component  of  the  squared  sum  of  the

gradients is being scaled by square root of epsilon plus r t 1 ok, where this r t 1 is the

sum of squares of the gradients and you take the first component of it.

So, your gradient of; the gradient of the first component is actually scaled by epsilon plus

sum of the squares of the gradients of the first component and you take the square root of

this. So, similarly if I go for updation of the ith component say W t plus 1 i. So, if I write

it this way W t plus 1 i, the ith component this will be updated as W t i th component

minus epsilon eta by square root of epsilon plus r t i times g t i. So, you are scaling by

epsilon plus r t i, where r t i is nothing but sum of squares of the i th component and you

are taking the sum starting from the beginning.



So, this is actually the cumulative square, and that is how you find that every update

component every component every update component is being scaled by the square root

of  sum of  squares  of  the  corresponding  gradient  value.  And  the  purpose  of  epsilon

putting  epsilon  is  epsilon is  a  very small  positive  number positive  quantity. So,  this

epsilon is put for stability of the division that in case your sum of squares of the gradient

values become 0, I do not face a situation of a division by 0. So, this is the purpose that

you are putting the epsilon. So, this is what is your Adagrad algorithm.
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So, as we have said before that this Adagrad algorithm has got certain positive points that

Adagrad  is  trying  to  adaptively  scale  the  learning  rate  of  different  dimensions  by

normalizing with respect to the gradient magnitude in the corresponding dimension or

square root of the sum of squares of the gradient values in the corresponding dimension.

And the eta that we have put in the expression, this eta is actually the initial learning rate,

and I  do not need to  tune it  manually. And this  makes your learning faster, because

always the Adagrad is trying to push the updates in the right direction in the direction of

the minimum error value. And as a result the Adagrad algorithm converges very rapidly

when your error function is actually a convex function.
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But Adagrad also has certain negative point that is if the function is non-convex, then the

trajectory may pass through many complex terrains and eventually it may find a locally

convex region. And what we try to do is and what should be our aim is that once you get

a  locally  convex  region,  the  Adagrad  algorithm  or  your  learning  algorithm  should

quickly converge at the minimum of that local convex region. But the problem is because

in case of Adagrad algorithm your scale factor is the accumulation of the squares of the

gradients  and because  the  square  of  the  gradient  is  always  a  positive  term,  so  as  t

increases or the number of iterations increases your scale factor goes on increasing.

And because it goes on increasing monotonically, so as t becomes large your scaling

factor that is 1 upon square root of epsilon plus r t that term may be almost 0, it may be

very very small.  And when it  becomes very small,  your training or the learning rate

becomes almost a 0, it  is very small  or vanishes. So, by the time Adagrad algorithm

comes to that local convex the learning rate may be very, very slow, and as a result your

overall learning of the convergence may take large time. So, at that point your model

may eventually stop learning. So, this is a problem of Adagrad algorithm though it has

many positive points.

So, in our next lecture, we will try to see other algorithms. And we will say we will try to

analyze that how the problem being faced by the Adagrad algorithm can be addressed in

those algorithms.



Thank you.


