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Hello, welcome to the NPTEL online certification course on Deep Learning. Since, our

last class, we were discussing about the various challenges which are faced during the

training of deep neural network.

(Refer Slide Time: 00:45)

So, one of the challenge that we are currently discussing is that how do you choose the

appropriate learning rate or what will be the rate of learning or what will be the rate of

convergence  of  the  learning  algorithm.  And,  the  learning  of  course  what  we  are

discussing  about  is  the  gradient  descent  approach  or  the  stochastic  gradient  descent

approach, and more particularly the gradient descent approach which is considered is

what is known as mini batch gradient descent approach. So, we are talking about this

deciding  about  the  appropriate  learning  rate,  so  that  your  back  propagation  learning

algorithm becomes more efficient.



(Refer Slide Time: 01:28)

So, in the previous class, we discussed about that, what are the different challenges that

you face in that gradient descent algorithm itself.

(Refer Slide Time: 01:43)

So, when I talked about this challenges, one of the challenge of course as we said that

how do you decide about the learning rate, or when you are updating the weights where

vectors of the parameters of your classifier what is the step size that has to be considered

for updating the parameters. If the step size is very large, in that case there is a possibility

that while updating the parameters, the algorithm will simply jump over the minimum



error location; or when the step size is very small it will take a large number of iterations

to reach the minimum, so that can be explained with the help of this particular diagram.

Say if I assume that initial weight vector say W 0 has been set somewhere over here then

you find that here the gradient, if I follow the gradient descent approach, then this weight

vector or weight has to be modified or updated in this direction for reduction of the loss.

Now, here if the updation step is very small, then at the next point the weight will be

somewhere over here. So, at the next instant, the weight will be somewhere over here; at

the next instant it will come over here and so on. So, as a result it takes large number of

iterations for convergence.

Whereas, if the step size is very large, then it is possible that at the next moment your W

1 will come somewhere over here, so this becomes the position of the W 1. So, as a

result you are jumping over this minimum location this might be your optimum weight

vector which will minimize the error. So, choice of proper learning rate or the proper step

size for updation of the weight is very, very important. 

(Refer Slide Time: 03:52)

The second challenge in this gradient descent approach that we have said is like this. It

might be possible that I can have a predefined schedule that how the learning rate or the

step size will change over the number of iterations or over the epochs. But if you do that,

it is the same step size which will be applied to all the parameters or all the components

of your weight vector which may not be very appropriate, because the gradient may be



very large with respect to certain parameters or it may be very small with respect to some

other parameters.

So, the parameters with for which the gradient is very large for those parameters, I may

like to have smaller step size and the parameters for which the gradient is quite small, I

may like to have a larger step size. So, that is very difficult to define beforehand, so that

means, predefined schedule of learning rate is extremely difficult. And it may be possible

that you may have to update or you may have to tune the learning rate on the fly as you

go on learning over different iterations. So, that is not possible if I go for predefined

schedule of the learning rate. 

(Refer Slide Time: 05:12)

The other kind of problem that you face is that while learning when the algorithm comes

across the saddle points. Saddle points are nothing but the points where in one dimension

the slope is in the positive direction, whereas in the other dimension the slope might be

in the negative direction. So, an example of saddle point is over here. So, this is what is

in the saddle point, here I have a saddle point. So, here you find that in this direction the

slope is positive it is sloping up; whereas, in this direction, it is sloping down. 

So, in such cases the gradient descent approach finds it very difficult to navigate that

reason being such that saddle points are surrounded by plateau where on all the points on

the plateau the error is almost same that means, the gradient vanishes and as the gradient

is  almost  zero,  the  algorithm  does  not  learn  anything.  So,  these  are  the  different



challenges that you face when you use the gradient descent approach. So for that what to

overcome this problem, what we have to think of the different approaches by which the

gradient descent algorithm can be optimized further. 

Or in other words, what we would like to have is an approach or the algorithms by which

the gradient descent or the back propagation learning algorithm can be more efficient.

So,  one  of  the  approach  that  can  be  used  for  making  the  gradient  descent  learning

algorithm very efficient is momentum optimizer. So, today we have we will try to see the

different  types  of  optimizers  one of  them is  momentum optimizers,  the  other  one  is

Adagrad and we will talk about other different optimizing techniques in our subsequent

lectures.

(Refer Slide Time: 07:21)

So, first let  us see that what is this momentum optimizer. You find that this gradient

descent algorithm I can have analogy of this with an example that I put a ball on a hilly

terrain, initially with an initial velocity of 0. So, it is something like this that suppose I

put a ball over here, let me change the color ok. So, suppose I put a ball somewhere over

here with an initial velocity which is 0, and this ball has got certain height and because of

this it has got an initial potential energy.

And the potential energy is given by U is equal to m g h, where obviously, m is the mass

of the ball, g is the acceleration due to gravity, and h is the height of the ball. And there

will be a force which will be acting on the ball which is negative of the gradient of the



potential energy that means, the force which acts on the ball is equal to minus gradient of

the potential energy which is U. And under influence of this force the ball starts sliding

along this hilly terrain or along the surface. 

So, it moves like this. And, as it moves down this hilly terrain, it gains momentum. And

subsequently the ball reaches this minimum point which is the plateau and because it has

a momentum, it will overshoot the plateau and will start moving in the other direction.

And how much it will move in the other direction that depends upon how much is the

momentum it has gained when it has reached the minimum point, and also what is the

opposing friction or what is the damping force acting on it.

So, while going on the other side, it will come to rest at certain point of time. And from

there again it  will  start  coming back to  the minimum positions,  so it  will  perform a

number of oscillations around the minimum position before it settles at the bottom of the

surface. So, our gradient descent approach that, we are discussing that can be compared

with this particular analogy ok.

(Refer Slide Time: 10:01)

So, this algorithm works fine as long as my surface is and well behaved surface that is

along every parameter in every direction,  the curvature or the slope of the surface is

almost  same.  But  you think of a situation  where I  have a  surface which is  an error

surface, where the curvature is very small in certain direction and it is very high in some

other direction. So, if it is so, then the gradient or the direction of the gradient in the



direction  where  the  curvature  is  high  will  be  very  high,  and  in  the  direction  of  the

curvature is low the component of the gradient in that direction will be very low.

So, in this figure, what I have shown is it is the planar projection of an hyper ellipsoid or

the  surface  I  can  consider  to  be an  hyper  ellipsoid,  and in  three  dimension it  is  an

ellipsoid.  So,  if  I  take  a  projection  on the  plane,  I  assume that  my vectors  are  two

dimensional vectors having components W 1 and W 2. And every closed contour on this

diagram, this, they represent loose eye points of equal energy ok. 

So, given this kind of situation, now you find that if I my initially the weight vector is

somewhere over here or if I put a ball somewhere over here as we said before that under

the influence of the gradient of the potential energy which is nothing but the force on it

acting on it.  It  will  start  sliding down the surface.  And the minima of the surface is

somewhere over here somewhere over here I have the minimum.

So, this gradient force which is acting on this will have two different components, one

component is in the vertical direction and other component is in the horizontal direction.

And as  we have  said  that,  the  curvature  of  the  surface  is  very  high  in  the  vertical

direction compared to the curvature of the surface in the horizontal direction. So, as a

result the component of the gradient which acts on this particle in the vertical direction is

very high compared to the component of the gradient in the horizontal direction. As a

result the force which is acting on this ball will be in this particular direction.

Now, assuming that it comes to rest over here, from here again you compute the gradient

it moves in this direction as again the component in the vertical direction is higher than

the  component  in  the  horizontal  direction.  From here  again,  it  will  move downward

direction  like  this  it  will  move  in  the  upward  direction  like  this  and  it  will  try  on

oscillating and you find that because of this to and fro oscillation in the vertical direction

which is very high in the vertical direction, the number of such iterations the algorithm

will take before it converges at the minima will be very high. 

So, this is what you have in case of a typical gradient descent algorithm. And you find

that you need large number of iterations because the gradient in one direction or gradient

in that direction of W 2 is much larger than the gradient in the direction of W 1. So, I can

avoid this problem if I bring in a concept of momentum. So, the concept is something



like this that again I assume the ball is over here, its gradient force acting on this, so the

ball comes somewhere over here. 

Now, at this location the gradient working on this ball may be in this direction, whereas

if I also consider the component of the momentum that is a force due to momentum of

the ball which is in this direction. So, if I consider both this gradient force as well as this

momentum force to find out what will be the net force which is acting in this ball. So, the

net force if I take it which is sum of these two forces, the net force acting on the ball will

be in this direction. 

And I assume that the ball will move in that direction of this resultant force. So, here you

find that instead of you are updating the weight vector in this direction, you are updating

the weight vector in this direction.  So, as a result you are moving faster towards the

minimum location,  and that is what is the effect of considering the momentum along

with a gradient descent.

So, what is the impact of this in our algorithm? So, if you remember the gradient descent

algorithm works like this, that I want to find out the weight the parameter at time t plus

1, and this parameter at time t plus 1 is obtained from the parameter of the weight at time

t minus gradient of the loss function, where loss is a function of the parameter or the

function of the weight vector W. And this gradient has to be taken with respect to my

parameter  vector  which  is  W. This  is  what  is  my normal  stochastic  gradient  descent

algorithm.

And now what I do is in addition to this I want to add a momentum term right. So, I

assume that at time instant t that is W t is somewhere over here this is the location of W t.

And it comes to W t from location W t minus 1 and with a gradient vector which is v t

minus 1. So, this was somehow W t minus 1 from W t minus 1 it comes to location W t

with a resultant force under the influence of a resultant force v t minus 1 resulting on

this. And at this location W t, I have two forces acting on it once is the gradient force

which  is  this  gradient  of  L  W with  respect  to  W, and  other  one  I  consider  is  the

momentum force which is some gamma times v t minus 1.

So, what I am adding is I am adding this momentum term to this gradient force. So, as a

result, W t minus 1 the weight updation equation will now be W t plus 1 is equal to W t

minus this gradient term which I had before it remains as it is L W t. In addition to this,



what I am adding over here is the momentum term which is nu v t minus 1. So, this is the

momentum term, and this is the gradient term. So, under the influence of these two now

the net update direction of the weight vector will be in this direction instead of in this

direction, and that is how your gradient descent approach with momentum improves the

rate of convergence or makes this back propagation learning more efficient.

So, this particular equation I can put in another form, I can write a gradient is v t in terms

of v t minus 1 which is minus nu times v t minus 1 plus gradient of L W with respect to

W. And after I write this my weight updation equation can be W t plus one becomes W t

minus  v  t.  So,  these  two taken  together  becomes  the  gradient  descent  or  the  vector

equation learning algorithm considering the momentum effect. And as a result of this,

you find that if I put to the two figures side by side, on the left hand side, the weight

addition sequence without s d without the momentum term is shown over here. 

So,  these are the weight updation sequences with momentum term you find that  the

weight  updation  sequence  will  be  something  like  this.  So,  when  I  consider  this

momentum  term  the  gradient  descent  algorithm  or  a  stochastic  gradient  descent

algorithm becomes much more efficient. Now, there has been another modification on

this momentum approach or the stochastic gradient descent or with momentum that has

been suggested which improves this momentum optimizer to a certain extent and that is

what is Nesterov accelerated gradient approach or known as NAG.

(Refer Slide Time: 20:09)



So, what is the NAG? You find that in every case with momentum, what I am assuming

is same i at time t, so I have W t somewhere over here, I come to W t with a momentum

with a previous force which is equal to v t minus 1. And due to this I have a momentum

term which is nu times v t minus 1, I have the gradient at this location which is delta L.

And under influence of these two, the net displacement or the weight updation which

will be done parameter updation will be given by the sum of these two vectors which is

in this direction.

Now, how this acceleration can be done or the gradient can be accelerated is this, if I

know beforehand because I know what is my momentum. And I assume that due to a

effect of this momentum what will be my position after effect of this momentum that is

where I am going to lead over here. And if I know that what is going to be my position

because of the momentum effect in future, then instead of considering the gradient at this

location I can find out what will be the gradient at this particular location. 

So, if I can do that, then suppose I will have the gradient vector which is falling in this

direction, then I can have an update instead of this I can have update location update

direction, which is sum of this momentum term and the gradient computed at the future

location.  So,  this  is  what  is  my  look  ahead  gradient,  I  am  computing  the  gradient

beforehand. So, I call it and look ahead gradient. So, you find that if I modify or if I

update  the parameters  using this  look ahead gradient,  in some cases  this  look ahead

gradient approach that may even improve the gradient descent algorithm further.
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So, just to illustrate this let us assume that we have say at time W t that W is over here or

my parameter is over here. And I have come to this parameter following of v t which is

given this. So, this was my or v t minus 1 which was in this direction. So, at this location,

I have nu times v t, v t minus 1, I have gradient over here which say acts in this direction

and the under the influence of these two, I will have a net update which moves over here.

Now, with this accelerated gradient, what I can do is I can assume that the position will

be somewhere over here in future, and I now compute the gradient vector at this location.

So, if I compute the gradient vector at this location I will my a great updation will be

over here. So, you find that this is the location of the minimum loss. So, using this in

Nesterov of accelerated gradient approach, you are moving faster to the minimum. And if

you do not this accelerated gradient approach, you are moving in this direction. 

So, now, you will need more number of iterations or more number of epochs before you

come  to  the  minimum.  So,  this  NAG  or  Nesterov  of  accelerated  gradient  helps  in

improving the gradient descent algorithm further. So, till now we have discussed about

two  approaches,  one  is  the  gradient  descent  with  momentum  and  next  the  gradient

descent with a modify the momentum approach where we are computing the gradient at

a  future  location  which  is  known  as  which  we  are  calling  as  look  ahead  gradient

operation. 



I am computing the gradient at a location, where I can guess that that will be my location

in  future  and  this  approach  that  is  NAG or  Nesterov  accelerated  gradient  approach

improves the performance of the gradient descent algorithm even further.

(Refer Slide Time: 24:54)

So, these are the two approaches that can be done, one is the momentum based gradient

descent,  other one is accelerated gradient descent.  However, you find that in both of

these cases I need a hyper parameter. So, the hyper ammeter that we have said is in case

of this gradient descent what I had is W t plus 1 is equal to W t plus some nu times v t

minus some eta times gradient of L with respect to W. And this nu and eta these are the

hyper parameters which determines how fast I am going to move towards the minimum

loss location, and these are the hyper parameters.

And in case of both this momentum optimizer as well as NAG or Nesterov of accelerated

gradient, I require this hyper parameters to be set manually which is difficult thing. And

as this hyper parameters decent the learning rate, values of this hyper meta parameters

are very very important. Not only that this algorithm uses the same learning rate or the

same step size for all the parameters for W 1, W 2, I have the same value of eta, I have

the same value of nu.

And as we have discussed before that may be I mean and that is what we have seen also

that  in  the  vertical  direction,  your  gradient  is  much  more  than  the  gradient  in  the

horizontal direction. So, if I can have my step size in the vertical direction lower than the



step size in the horizontal direction, the learning will be much more efficient, but which

is not done with this momentum based optimizer or even this Nesterov of accelerated

gradient approach. So, that is another problem which is faced in momentum optimizer as

well as in NAG.

You  also  find  that  the  high  dimensional  and  mostly  non  convex  nature  of  the  loss

function that may look to different sensitivity or different dimensions. So, as a result, I

may  like  to  have  different  learning  rate  for  different  parameters  which  is  also  not

possible using this momentum based optimizer or NAG. So, I will stop here today. In our

next lecture, we will try to see some other algorithms where these concerns that having

the  same  learning  rate  or  avoiding  having  the  same  learning  rate  for  all  different

parameters that can be improved further.

Thank you.


