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Hello, welcome to the NPTEL online certification course on Deep Learning. For last few

lectures, we are talking about some of the popular convolutional neural network models.

And in the last class, we have talked about a particular model which tries to deal with a

very, very challenging problem faced in the deep neural network which is the vanishing

gradient problem.

(Refer Slide Time: 01:01)

So, the problem that we have talked about that is the vanishing gradient problem. We

have seen the architecture of a network known as GoogLeNet and we have seen how

GoogLeNet tries to alleviate the problem of vanishing gradient. In today’s lecture, we

will  talk  about  another  network  architecture  which  is  known as  residual  network  or

ResNet, and we will also see that how in case of residual network the vanishing gradient

problem is addressed. 

And after that we will also talk about another challenge which is faced in the deep neural

network that  is  how to choose the parameters  or the step size when you update the



network parameters or the network weights. So, today we will particularly talk about one

particular approach to solve such a problem which is known as momentum optimizer.

(Refer Slide Time: 02:03)

So, let us see just briefly what we have done in the previous lecture. So, the problem did

that  we  tried  to  address  this  is  the  vanishing  or  exploding  gradient  problem and  a

particular network architecture we discussed is GoogLeNet, and we have seen how this

vanishing product gradient problem is addressed in Google network.

(Refer Slide Time: 02:27)



So, in GoogLeNet the architecture is something like this. So, as we have discussed in the

previous  class,  the GoogLeNet  consists  of  9  inception  modules,  and every  inception

module  computes  the  features  at  different  scales  starting  from  starting  with  the

convolution kernels of size 1 by 1 to convolution kernels of size 5 by 5. So, all these

different features at different scales are computed by inception module in GoogLeNet

simultaneously. 

And the outputs of each of these feature extractor modules or outputs of each of these

convolution kernels; they are stacked one after another to give you the feature map from

a  particular  inception  module.  And  then  this  feature  map  is  passed  onto  the  next

inception  module as an input  for processing.  So, these are the basic  elements  of the

GoogLeNet.

(Refer Slide Time: 03:39)

And  the  way  the  GoogLeNet  addresses  are  tries  to  solve  the  problem of  vanishing

gradient is by making use of some auxiliary classifiers. So, as we have discussed in the

previous class, we have one classifier over here which is actually the main classifier. And

we have two more classifiers over here which are auxiliary classifiers. This auxiliary

classifiers take the outputs from the inception modules which are in the middle of the

GoogLeNet, and exploits the power of the features or the discriminative power of the

features which are computed by the inception modules in the middle. And because these



are also classifiers, so they also produce some loss function. So, both these auxiliary

classifiers at this level and this level they also compute some loss function.

So, when you have compute the final loss function, these two loss functions after scaling

by a factor of three is added to the final loss function which is computed over here. And

this inter loss function is used for back propagation learning that is the gradient of loss

function with the parameters with respect to the parameters are passed in the backward

direction  for parameter  updation.  So, as you are computing the loss functions in the

middle  of  the  GoogLeNet,  so  the  problem  of  vanishing  gradient  is  believed  to  be

addressed by using this auxiliary classifiers which are in the middle of GoogLeNets.

So, with this brief introduction of what we have done in the previous class, now let us try

to see the other network that we are going to discuss today is the residual network or

ResNet. And let us see that how this ResNet also addresses the problem of vanishing

gradient.
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So, the core idea in the ResNet is, it introduces skip connection or identity shortcut. So,

the  purpose of  this  skip  connection  or  identity  shortcut  is  that  it  skips  one  or  more

parameter layers or weight layers, and feeds the input and directly bypassing say one or

more layers to a layer ahead. So, the connection that is given over here that suppose I

have this is the output from one layer and following this I have two more layers, a one

layer over here and another layer over here. 



So, this activation from the previous layer is directly moved to two layers ahead and

added over here to be passed on to the next layers. And this is done in addition to the

regular path of the information flow in the forward path which flows through these two

weight layers as well. So, this skip connection is the core contribution of the core idea in

the skip connection or ResNet network and it is believed that stacking of the layers this

should not degrade the performance when you compare the performance with respect to

its shallow counterpart. 

Because, we have discussed in the previous class that in many cases it has been found

experimentally that the performance of the deep neural network which is believed to give

better performance compared to the shallow network for the same job, but which is not

always true, and this happens because of the vanishing gradient problem. So, because of

this skip connection, as the skip connections are introduced, so now, it is expected that

stacking of layers or as we have more number of layers in our deep neural network, the

performance should not be worse than its shallow counterpart.

And while doing so why it is ResNet, if you look at these two layers over here what these

layers learn. If I assume that output over here is my H x, so H x is nothing but x, but plus

F x, where F x is the activations which are implemented these two layers which are

skipped, so H x will be basically F x plus x. So, what is F x in this case F x has to be H x

minus x.  So,  this  is  the residual  and that  is  what  is  learned by the layers  which are

actually  skipped and that  is  the  reason this  is  what  is  known as  skip  connection  or

residual network.
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So, given that so as we have already said that by stacking this identity  mappings or

giving the skip connections, the resulting classifier or the resulting network that we have

that should not perform worse than its shallow counterpart or it should give at least to the

same performance as its shallow counterpart. And as a result, it is also expected that such

deep networks should not give higher training rate compared to the shallow network. 

And during learning, when we have to pass the gradient or the error gradient from the

output side towards the beginning of the network, such gradients can also flow from any

layer to any layer before to the shortcut, shortcut connections. So, from any layer to any

of the earlier networks, any layer in the any earlier layer in the networks from which we

had the shortcut connection or we had the skip connection, the gradient can directly flow

to that connection as well.
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So,  as  seen  over  here  so  whatever  gradient  is  available  at  this  particular  level,  so

whatever gradient is available there at this particular level, this gradient can directly flow

to the layer beyond this, so that is the advantage of the ResNet or skip connection that

the gradient need not flow through each and every layer in your deep neural network,

and that is how it can avoid the problem of vanishing gradient.

(Refer Slide Time: 10:35)

So, now given this let us see that how the information flows through this residual neural

network.  So, this  diagram shows a 34 layer ResNet.  So, here you find that all  these



bypass connections which are shown by the curved arrows. So, they represent all the skip

connections which skips a number of layers in between to feed the information layers

ahead. So, the way this ResNet forwards the information or as the information flows in

the forward direction is given by this. If I assume that this layer is at layer l, the previous

layer is at layer l minus 1, and the layer previous to that is layer l minus 2. 

Then the information forward information which is available to the input of layer l is

basically a function of the activation at layer l plus 1 activation at the output of layer l

minus 1 plus the activation at the output of layer l minus 2 and that is what the skip

connection gives. This activation and this activation they are added together and that

gives the input to layer set layer l. And the output of layer l will be a non-linear function

of this total input.

So, if I assume that the input to layer l minus 1 is a l minus 1 which is basically sorry the

output the activation of layer l minus 1 is a l minus 1 and the activation output of layer l

minus 2 is l a l minus 2, and the connection weights from layer l minus 1 to layer l is

given by W l minus 1, l, and the connection weights from layer l minus 2 to layer l is

given by W l minus 2 l, in that case the activation at the output of layer l which is a l is

given by a non-linear function of W l minus 1, l times a l minus 1. 

Where, a l minus 1 is the output or the output activation of layer l minus 1 plus b l b l is

assumed to be the bias at the input of layer l plus W l minus 2 l times a l minus 2, where

a l minus 2 is the activation at the output of layer l minus 2. And that can be written as it

is a non-linear function of Z l plus W l minus 2 l a l minus 2, where Z l is nothing but this

term which is the activation at the output of layer l minus 1. So, this is what is Z l.

So, I can compute the activation at the output of layer l as a function of Z l plus a l minus

1 in case a l minus 1 and Z l sorry a l minus 2 and Z l they are of same dimension. But if

a l minus 2 and Z l they are of different dimension, then I have to have a mapping by

making use of a weight matrix which is W l minus 2 l. So, if there is identity, in that case

I have Z l plus a l minus 2 that passes through the non-linear activation of layer l, and

that gives me the final output a l. And this is how the information flows in the forward

direction through a residual network. 

So now, let us see that how does this residual network perform the back propagation

learning or how this skip connections help to alleviate the problem of vanishing gradient.
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So, while back propagation, I can have the gradient to propagate backward from layer l

to layer l minus 1 following the usual link. This gradient can also flow from layer l to

layer  l minus 2 following the skip connection.  So, the back propagation,  I  have two

gradients, one is the update of the weights of W l minus 1 that is the update over here

that is given by delta W l minus 1, l, which is minus a l minus 1 times delta l and that is

what close to the normal path.

And, when you use the skip path that is for updating these weights W l minus 2, l, the

gradient flow becomes the delta W l minus 2, l is minus a l minus 2 as l minus 2 is the

output activation of layer my l minus 2 times delta l. So, this is what follows the skip

path.  And of  course,  if  the  skip path  has  got  fixed  weight,  in  that  case  this  weight

updation of the skip path is not required anymore, because in that case it becomes an

identity matrix. And what is delta l, delta l is the propagated error gradient at layer l. So,

delta l is over here right.

So, you find that when this back propagation has to be carried out further at this location,

you have the error propagation from both paths; one is the normal path the usual path

and other one is to the skip paths. And it is skip path which helps in avoiding the problem

of vanishing gradient, because from the previous layers the error gradient, the gradient is

directly passed to the other layers in the forward direction in the backward direction. So,



this is how the vanishing gradient problem can be tackled using this residual network or

ResNet. 

So,  given  this  as  we  have  discussed  about  two  different  architectures,  one  is  the

GoogLeNet  and other  one  is  the  ResNet.  And  we have  seen  that  how in  these  two

architectures the vanishing gradient problem has been addressed. In case of GoogLeNet,

the  vanishing gradient  problem has  been  addressed  using  the  auxiliary  class  effects,

whereas in case of ResNet the vanishing gradient problem has been addressed by using

the skip connections or the residual network part ok.

Now, given this, now let us talk about the other problem, the other challenge that you

face in deep neural network that is during learning or during training of the network, how

do you choose the appropriate learning rate or how do you choose that what should be

the weight upgradation step size that is what is your learning rate. So, let us see how

these  problems can  be  tackled  in,  or  what  are  the  different  algorithms  available  for

tackling this particular problem.

(Refer Slide Time: 18:49)

So, what we will discuss today is one of the optimization approaches for optimizing

gradient descent problem optimizing the gradient descent operation and the algorithm

that we will talk about is what is known as momentum optimizer. So, let us see what that

momentum optimizer is. Now, before that let us see that what are the challenges in the

gradient  descent  problem.  So,  in  gradient  descent  problem as  we have said the first



challenge,  the  important  challenge  is  the  choice  of  proper  learning  rate  or  weight

updation steps. 

If we choose the learning rate to be very small or weight updation steps to be very small,

then your convergence or the learning rate is very, very slow the convergence is very

slow. At the same time, if the weight updation step is very large, then that may lead to

oscillation around the minima of the loss function or in some cases it may even diverse

instead of converging.

So, let us see how does that can happen. For simplicity, I am assuming a loss function in

one dimension say I have a loss function l which is a function of a scalar parameter W.

And I want to update the value of W in such a way that the loss value of the loss should

be minimized, and this is what we have already discussed in one of our earlier lectures.

So, what I am going to do is just a short of recapitulation. So, to initialize what you do is

your initialization is done at random say for example I have initialization somewhere

over here. So, W is chosen somewhere over here.

So, for updation what you do is you take the gradient of L at this location,  and you

update W in the direction of negative gradient that means, suppose this was my W 0, and

to have that  W 1 because the gradient  direction is this,  I  take a step in the negative

direction, so I come over W 2 or W 1 which is somewhere over here that is my next

estimate of W or the weight value. So, here you find that as you are estimating the W

over here, the value of the loss function that is deduced, now the value of loss function is

this. So, my step of updation was this much.

If  this  step size  is  very  small,  then  I  will  slowly  move towards  the  error  minimum

somewhere over here. So, the number of iterations may be quite large if my updation

step size is very small. If the updation step size is large that is instead of W 1 being here

suppose that W 1 comes somewhere over here if the updation step size is very large. And

because of this you find that your loss value straight way jumps from here to here, and in

the process you are bypassing your minimum loss location. 

Of course, gradually we will come over here, but there will be an oscillation. It may so

happen that if the step size is very large, in that case I may even go over here it can go

like this, and in such cases instead of converging to the minimum loss location you are



actually diverging. So, you find that choice of proper step or proper learning rate is very

very important. So, this is one of the challenges of the gradient descent problem.

(Refer Slide Time: 22:45)

The other challenge is that I can have a pre scheduled of learning rate that is how the

learning rate will change over the iterations and that can be scheduled before and so that

is what is pre scheduling. But the problem in that case is that the same learning rate has

to be applied to all the parameters which might not be a wise choice, because our data

may be sparse, and not only that the different features may have different distributions or

different frequencies.

So, if it is so, then updating all these parameters by the same extent or using the same

step size may not be proper. So, what I need to do is, depending upon the frequency a

larger update I can use for rarely opening features, whereas for those features which are

frequently occurring I can have a smaller update size. So, this is another problem in

gradient descent optimization techniques. 
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The other problem which is also very, very challenging is that my algorithm may be

tracked in suboptimal local minima, particularly, if the error surface has a saddle point

something as shown in this diagram say as over here. So, what are the saddle points?

Saddle points are that surface that point on the surface where in one dimension the slope

rises whereas in other dimension the slope goes down. So, it is over here in this direction

the slope is rising, whereas in this direction the slope is falling. So, this is what a saddle

point.

And  the  challenge  comes  because  of  the  fact  that  this  saddle  points  are  usually

surrounded by plateau of the same error over which the gradient values negligible. And

when  it  is  so,  then  the  gradient  descent  algorithm  or  stochastic  gradient  descent

algorithm find it very difficult to come out of this problem. So, these are the different

challenges that we can have in gradient descent. So, now, let us see that how we can

tackle this problem.
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What I can do is, I can assume say this is the surface given by the loss function. And for

simplicity  I  am assuming that  my parameters  are  two-dimensional  parameters  or the

weights are two dimensional weights having W 1 and W 2. And the way you start your

gradient descent operation is that you assume that initially the parameters or the weights

are say initialized somewhere over here, say initial is the weights somewhere over here.

And then what you do is you compute the gradient at this location and the direction of

gradient is such that it falls along the valley and finally, it should come to the minimum

location.

So, I can assume that I place a ball at this location with initial velocity 0 and that ball

will have a potential energy which is given by u is equal to m g h. And the force which

acts on this ball  is say F which is nothing but gradient  of this potential  energy with

negative. So, minus grad u is the force acting on this ball. And under the action of this

force  the  ball  falls  along  the  surface,  and  while  falling  on  the  surface  it  gains  the

momentum. So, while falling it will drop down to it is expected that it will drop down to

this minimum point on this surface ok.

The algorithm is fine if the surface is a well behaved surface or it has equal curvature in

all the directions. But the problem arises, if we find the surface is not well behaved or the

curvature  in  one  dimension  in  one  direction  is  more  than  the  curvature  in  another

direction, and that is where this momentum optimization technique which is nothing but



an approach for making your gradient descent more efficient.  So, these are the cases

where  the  momentum optimization  technique  will  help  in  faster  convergence  of  the

gradient descent algorithms. So, let me stop here today. In our next class, we will talk

about this momentum optimization.

Thank you.


