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Hello, welcome to the NPTEL online certification course on Deep Learning. For last few

lectures,  we are  discussing  about  the  different  popular  convolutional  neural  network

architectures. And while doing so, in our previous lecture we have tried to see that what

are the challenges of a deep neural network and we were also discussing that how those

challenges are addressed or can be addressed in different networks.

(Refer Slide Time: 01:05)

So, we have talked about the challenges in deep learning and let us just try to recapitulate

that what are those different challenges that we have seen.



(Refer Slide Time: 01:17)

So, the first challenge that we have said is a deep learning is data hungry. In the sense,

for training of the deep neural network you need a large volume of data maybe thousands

and thousands or even lakhs of data for the training purpose and all those data have to be

annotated data. However, practically it may not be possible to generate sufficient number

of data which will be used for the training purpose.

So,  in  that  case  what  you  have  to  go  for?  We have  to  go  for  data  augmentation

techniques, so that even if you have the limited number of data by processing those data

we can multiply the data volume. And the kind of processing can be that you can take

different crops or different portions of the data which is taken from the data which is

already available for the training purpose.

 Or you can employ different types of distortions on the given training data, but keeping

its custom maybe you can take the mirror imaging of it or you can modify the intensity

you can modify the color and so on. So, that is how you can address the problem of

generating voluminous data for training of the deep neural network.

The other kind of challenge or the problem which is faced in deep learning is over fitting

of the model or lack of generalization of the model. As the number of parameters in the

deep neural network are very high, so it is quite possible that while training the neural

network will try to memorize the data which has been fed for the training and in the



process it does not really understand or really encode the structure or the features which

are present in the data.

So, to avoid this over fitting problem there are different techniques which have been

employed and we have discussed many of them in our previous lectures, one of them we

have said is that when you try to train an auto encoder network one of the layers in the

auto encoder network is a bottleneck layer and the purpose of using this bottleneck layer

is that whenever you are training data or the information process through the network it

passes to a constant region. 

So, as a result the network does not or cannot simply memorize the training data, but it

has  to  understand the structure or the  features  present  in  the training data.  And that

features  can  be  used  later  on  for  recognition  purpose  or  understanding  purpose.

Similarly,  other  kind  of  approaches  to  tackle  this  over  fitting  is  having  noisy  auto

encoder for the training data, you add noise to the training data, so that the auto encoder

try to tries  to understand what is  the inherent  structure or salient  features  which are

present in the training data and using that it tries to recognize the image or it tries to

understand the image. 

So, there are different such approaches by which the over fitting or lack of generalization

that can be avoided. One of them is by having the generalization loss, incorporating a

generalization loss in the loss function where the generalization loss can be L 2 norm of

the  weight  vectors  which  are  there  in  your  neural  network.  So,  there  are  various

approaches in which the over fitting can be addressed and we have discussed about those

addresses in our previous lectures. 

The other problem that we have said is the vanishing or exploding gradient problem. And

we have also said that  this  problem becomes very severe as the depth of the neural

network becomes very large. The reason for this is that when you train a neural network

or when you tune or update the parameters of the neural network, it is the gradient of the

output error which is considered for updation of the parameters or the weights in the

neural network. 

And  why  you  take  the  gradient  is  using  the  gradient  descent  approach  you  try  to

minimize the output error with respect to the different parameters and while doing so you

update the parameters in such a way that the output error is reduced.
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So, if I look at this next slide which of course, we have discussed in our previous lecture

that I have taken a very simple multilayer neural network, where every layer consists of

one node and input is also a scalar, say input is a scalar X and because every layer

contains only one node, so the activation that you get from a every layer is also a scalar. 

So,  going by this  your final  output  O over  here,  this  output  O will  be basically  the

function f 4 of W 4 multiplied by f 3, f 3 of W 3 multiplied by output of f 2, where f 2 is

W 2 multiplied by the output of f 1, where f 1 is the function of W 1 times X and each of

these functions f 1, f 2, f 3, f 4, they are basically non-linear activation functions. 

So, if I wanted to update this input vector this weight vector W 1, so that the error at the

output is reduced or minimized then I have to make use of the gradient descent approach

or I have to find out the gradient of the output error with respect to W 1. Similarly, for

updation of W 2, I have to find out the gradient of the output layer with respect to W 2

and so on and when you try to take the gradient of the output layer our term comes which

is gradient of output with respect to the corresponding parameter. 

So, suppose in this case we are trying to update the value of the input weight of the

parameter W 1. So, I have to compute what is del O del W 1. And if you compute in this

following this chain relation in this function you find that del O W del W 1 will be X 1

into f 1 dash into W 2 into f 2 dash into W 3 into f 3 dash into W 4 into f 4 dash. And the

number of such terms in this product will go on increasing with the depth of the network.



If it is 5, if the depth of the network is 5 then two more terms will appear in there will

appear in this expression that is W 5 and f 5 prime and so on. 

So, if you study this product which is nothing, but the gradient of the partial derivative of

the output with respect to your input parameter with respect to the parameter W 1, you

find that there are various terms which effects this gradient and one of the terms are f 2, f

3, f 4 and the derivatives of that. That means, the nature of the non-linear activation

function used in these neural networks they have a say on the value of this derivative.

And the other factors are the weights W 2, W 3, W 4 and so on. These weights also

decide what will be the value of del O del W 1. 

So, naturally, the nature of this non-linear activation functions that decides what is what

will be the value of this product.

(Refer Slide Time: 09:46)

That is the reason that in case of deep neural network instead of using sigmoidal function

as a non-linear activation the non-linear activation function which is mostly used in deep

neural  network  is  rectified  linear  unit,  because  if  I  take  sigmoidal  function  then  the

maximum derivative of the sigmoidal function as we have told in our previous class is

given by 4, 1 by 4 which is already less than 1. 

And in this product term you find that if the all the terms are less than 1, then the final

product  will  be very  very less  than  1,  which  will  be almost  0,  negligible.  And if  it



becomes almost 0 then when you try to update W 1 as W 1 minus delta times del W 1

that del W 1 terms will almost vanish and as a result the W 1 will not be updated at all. 

So, the nature of this non-linear function f that is very very important and why you use

ReLU is the derivative of ReLU is equal to 1, when as long as its argument are greater

than 0, right. So, that is why ReLU is preferred as the non-linear activation in case of

deep neural network. The other terms are the weights W 1, W 2, W 3. So, naturally you

find that if all of them are ReLU non-linear activation functions that ReLU do in that

case this product becomes W 2 times W 3 times W 4 because for ReLU the derivative of

non-linear function is 1. 

And here if W 2, W 3, W 4 all of them are less than 0, so let us assume they are 0.5. So,

it will be 0.5 into 0.5 into 0.5. So, the product will be very very less than 1. And that is

what is vanishing gradient problem because as you are moving towards the earlier layers,

the  value  of  the  gradient  goes  on  reducing  exponentially. On the  other  hand,  if  the

weights are greater than 1 then all  of them multiplied together increases the gradient

exponentially and that is what is gradient explosion problem.

So, in one case it is vanishing gradient problem, in other case it is exploding radiant

problem and both of them are bad for training of the deep neural network and that is the

reason it  has been found that in many cases the deep neural network performance is

worse than its shallow counterpart.

So, to address this problem either we have to choose the weights appropriately, so there

we have said that  when you choose the  weights  at  a  random initially  for  if  a  node

receives the input from say N number of nodes. So, if I have a situation something like

this. So, I have a node over here in a certain layer and it receives input from N number of

nodes then these weights are to be decided at random where the mean of the weights will

be 0 and the standard deviation of the weights or the variance of the weights have to be 1

by N. 

So, this is the mean mu and this is the variance sigma square of the weight components

that you want to assign at this layer. And in some cases instead of one the variance 1 by

N, the variance is also taken to be 1 by N. And that is rule of thumb how you decide or

how you select the weights at random to the connection weights at any of the layers.



And the other possibility, the other approach to tackle this vanishing gradient problem as

we said earlier is by taking intelligent back propagation learning algorithm; that means,

by having a proper architecture or the algorithm to be used for that professional learning.

So, this is how what we are going to discuss today. That will be discussing about two

architectures, one is GoogLeNet and the other one is ResNet or residual network and we

will try to see that how this vanishing gradient problem are addressed in GoogLeNet as

well as ResNet. 

(Refer Slide Time: 14:09)

So, firstly, let us talk about GoogLeNet. In fact,  in our previous one of our previous

lectures we have talked about VGGNet that was particularly VGG 16 and we have said

that  VGG  16  was  the  first  runnersup  in  the  visual  recognition  challenge  2014  and

GoogLeNet  was actually  the winner  of  ILSVRC that  is  image net  large-scale  visual

recognition challenge 2014.
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So, let us see what this GoogLeNet is. So, here this diagram shows the architecture of the

GoogLeNet  where  every  blue  box  represents  a  convolution  layer,  every  red  box

represents maxpool layer, the green box is represent the feature concatenation all  the

features that you compute from the convolution layers or after the maxpool layers they

are concatenated together to give a feature map. 

And at the output of the classifier at the final after the fully connected layer fc layer you

have the softmax layer which is used for classification.  And as before the number of

nodes in the soft max layer is 1000 one bar image category in the image net database.

And if you look at this GoogLeNet architecture you find that there are 22 layers with

parameters. 

So, these layers are actually convolution layers and fully connected layers. And if you

also  consider  the  Maxpool  layers;  obviously, the  Maxpool  layers  does  not  have  any

tunable parameters then the total number of layers that you have in the GoogLeNet is 27

and you can compare the architecture of GoogLeNet with the VGGNet, right. So, this is

what is GoogLeNet architecture. 

And if you look inside GoogLeNet architecture you find that there are a number of units

which are almost repetitive. Say for example, this is one unit, this is another unit, this is

another unit and so on. So, there are 9; 1 2 3 4 5 6 and the yeah there are 9 such units in



the Google Network and these units are almost identical.  So, these units are actually

inception units they are called as inception units.

(Refer Slide Time: 16:49)

So, let us proceed further. So, what are these inception units or inception modules? You

find  that  this  inception  units  or  inception  modules,  they  actually  compute  under  the

features which are used in the Google Network. And if you look at the way they walk or

the number of different types of convolution units they have convolution kernels of size

3 by 3, convolutions kernels of size 5 by 5 and also convolution kernels of size 1 by 1.

So, GoogLeNet actually introduces a 1 by 1 convolution kernel and we will see that what

is the use or what is the advantage that you gain using this 1 by 1 convolution kernel. So,

this is what is the inception unit. You have the different completion layers, you have the

Maxpool layers and finally, outputs of all these different convolution channels or feature,

convolutions are actually the operations to extract the feature state that is what we have

seen  earlier.  So,  finally,  in  this  inception  module  the  different  features  which  are

computed by different convolution kernels they are stacked together to give you a feature

map.

So, here what we have is depth concatenation, all the feature maps given by different

convolution channels or different feature channels they are stacked one after another to

have the final feature map. So, let us proceed further to see that what are the things that

we have in this inception module. 
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So, this inception module has 1 by 1 convolution kernel, it has 3 by 3 convolution Kernel

and it has 5 by 5 convolution kernel and all these convolution kernels are within the

same inception module of the network. And this is a concept which is called network

inside network. So, I have inception networks or inspection modules which are networks

by themselves, which are within the inter entire GoogLeNet.

Now, when I have larger convolution kernels, larger convolution kernels cover a larger

area  to  compute  the  features.  So,  when it  is  5  by  5 convolution  kernel,  it  covers  a

receptive  field of 5 by 5 pixels to  give you the features  within those 5 by 5 pixels.

Similarly, if you use 1 by 1 conversion kernel, then 1 by 1 convolution kernel actually

gives you the further details which are present in the image, ok. 

So, this 1 by 1 convolution kernels that gives you the most accurate features, whereas if

you use the convolution kernel size you get a feature which is over a trend or over a

larger area of the image. So, as you vary the convolution kernel size say 1 by 1, 3 by 3 to

5 by 5 you are actually extracting the features at different scales starting from the finest

features in 3 by 3 to the cores features given finest features given by 1 by 1 convolution

kernel to the course features given by 3 by 3 and 5 by 5 convolution kernel.

When you use 1 by 1 convolution kernel that also reduces the amount of computation

that you have to perform. Let us see how this 1 by 1 convolution kernel reduces the

amount of computation that you have to perform 
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So, let us try to say this, suppose I have an input feature map which is of size 14 by 14 by

480, so there are  480 different  feature maps or the channels  which are concatenated

together and size of every feature map is of size 14 by 14. And from there I wanted to

extract features which are again 14 by 14 by 48; that means, size of every feature map

remains the same which is 14 by 14, but the number of channels are reduced to 48. So,

this  can be done in two ways, either  use it  directly  by using 5 by 5 kernels and 48

number of such kernels of course, with stride.

So, each of this 5 by 5 kernels gives you with stride and appropriate padding gives you a

feature map of size 14 by 14 by 1. Each of these 48 channels each of these 48 kernels

will give you a feature map of size 14 by 14 by 1, as I said with appropriate stride and

the corresponding padding operations. And each of them gives you one feature map. So,

when I have 48 number of such kernels I get 48 feature maps you stack them together

you get 14 by 14 by 480 number of kernels. 

The other way is that suppose this is just one of the ways this can be done, there are

numerous possibilities in which the same can be implemented. So, one of the approaches

first let us assume that we will have 1 by 1 kernel and each of this 1 by 1 kernel will give

you 14 by 14 feature maps, 14 by 14 by 1 feature maps and if I use 16 such kernel I will

get a feature map of 14 by 14 by 16, by stacking the outputs of outputs which are maps

computed by each of the kernels. 



And then from here at the second level I can have 5 by 5 kernels, so each of the 5 by 5

kernels will map this feature map 14 by 14 by 16 to 14 by 14 by 1 of course, with proper

stride and proper padding that we have already discussed before. So, each of this 5 by 5

kernel is giving me a feature map of size 14 by 14 by 1. If I use 48 number of such

kernels then I have 48 such feature maps each of size 14 by 14 by 1, you stack 48 such

feature maps together you get a feature map of 14 by 14 by 48. So, you find that here

also I get 14 by 14 by 48, here also I get 14 by 14 by 48. 

Now, if you compute the number of operations that you have to perform in a both of

these options you will find that, when I use this option that is directly from 14 by 14 by

48 to 14 by 14 by; 14 by 14 by 4 480 to 14 by 14 by 48 using 48 kernels each of size 5

by 5 the total number of operations that I have to perform is 14 into 14 into 48 into 5 into

5 into 480 that gives you around 112.9 million operations. 

Whereas, if I first use this 1 by 1 kernels followed by 5 by 5 kernels for the number of

operations that you perform with 1 by 1 kernels is around 1.5 million, you can compute

this to verify and subsequently with 5 by 5 kernels the number of operations is around

3.8 million. So, the total number of operations in this option becomes this plus this which

gives you total 5.3 million operations. 

So, you compare this with this for direct conversion or direct mapping, I need 112.9

million operations whereas, using initially this 1 by 1 convolution layers convolution

kernels the total number of operations comes out to 5.3 and which is obviously, much

less compared to one order less it is just 5.3 against 112.9. So, your computation has

been reduced just  again.  So,  this  is  one of  the advantage that  you get  using 1 by 1

convolution layers.
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So, once you do that then finally, what you have is the output of these filters each of

these channels are then stacked together to give you the final feature map. So, every

inception module is acting as a multilevel feature extractor and you see there are 9 such

inception modules and this GoogLeNet gave a top 5 error rate of less than 7 percent

which is of course, marginally better than what you have got in case of VGGNet. So, this

is what the Google Network.

(Refer Slide Time: 26:11)



Now, let  us  just  see that  how this  GoogLeNet  tries  to  tackle  the  vanishing gradient

problem. So, as we said that the fun final layers in the GoogLeNet which is over here

they are actually classification layers and you look at that this GoogLeNet gives you two

more classifiers which are known as auxiliary classifiers which are added in the middle

layers and these are the auxiliary classifiers. 

So, this auxiliary classifiers have this fully connection, fully connected layers, it has the

softmax  activation  layer  then  output  of  the  softmax  activation  layer  is  actually  a

classifying output. So, what is the purpose of having this auxiliary classifiers?

(Refer Slide Time: 27:00)

You will find that as we have told before that you have the vanishing gradient problem

because of the depth of the network while training as we try to propagate the error or the

gradient towards the early layer of the network the gradient almost vanishes. And this

auxiliary classifiers are basically smaller convolution networks CNNs which are put on

top of middle inception modules. 

So, this addition of auxiliary classifiers in the middle layers in the on top of the middle of

inception  modules  actually  tries  to  exploit  the  discriminative  power  of  the  features

produced by the layers in the middle. So, as they are classifiers they will also give a

classification error and these classification errors are computed from the middle level

inception modules.
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So, while back propagation when you are performing the back propagation learning, the

loss computed from this auxiliary classifiers are added to the total loss of the network

and of course, these auxiliary layer outputs the lost on the auxiliary layer outputs are

scaled by a factor of 3 and then added to the final loss functions. And because of this,

because you are computing the loss from the middle layers and adding to the final loss

function and that is being used during the back propagation operation. 

So, this is expected that the vanishing gradient problem will be solved to some extent. Of

course,  this  auxiliary  classifiers  are  used  only  during  the  training  of  the  network.

Auxiliary classifiers are not used at the test time or at the inference time. So, we have

seen that  in  case of  GoogleNet  what  is  the architecture  of the GoogleNet  and using

auxiliary classifiers how the GoogleNet tries to tackle the problem of vanishing gradient.

So, in our next class we will talk about the race net or residual network and we will see

that how this residual network also tries to address the vanishing gradient problem. So,

we will stop here today.

Thank you.


