
Deep Learning
Prof. Prabir Kumar Biswas

Department of Electronics and Electrical Communication Engineering
Indian Institute of Technology, Kharagpur

Lecture – 40
Vanishing and Exploding Gradient

Hello, welcome to the NPTEL online certification course on Deep Learning. So, we are

discussing about some popular CNN architectures, in our previous few classes we have

discussed about two different CNN models – one of them was AlexNet and the other one

was VGG Net.

And, then also we have discussed about a concept which is widely used in the deep

neural network domain that is the concept of a transfer learning. The concept is that if

you  have  a  network  which  is  learnt  or  which  is  trained  for  a  particular  application

domain then the knowledge gained or the knowledge that you have gained during the

training of the network in some domain then this knowledge can be reused in some other

domain.

And, that is possible because the features which are learned by the network in the earlier

layers of the CNN network these features are mostly generic in nature. Say, for example,

if I consider my domain of application is image recognition, then in some cases we have

images of say animals and in some other application we have images of cars. In both the

cases the features which are learnt in the first convolution layer are the edges; the edges

may be vertical, the edges may be horizontal, the edges may be diagonal and so on.

And, these are the edges which are present in both the domains whether my image comes

from the animal database or the image comes from the car database. So, while training

my network onto the animal database the first layer whatever it has learnt that is the

features  which  are  different  types  of  edges  vertical,  horizontal,  diagonal  and  so  on

because they are also applicable in case of other database that is in the database of cars.

So,  the  knowledge  which  are  gained  in  this  first  layer  can  be  reused in  the  second

application as well. So, that need not be retrained.

So, if you look at that way in that case you can easily find that the knowledge which are

gained in the early layers of the CNN can be reused in any other application. But, the



knowledge which are gained or in the later layers of the neural network those knowledge

is  mostly  domain  specific.  So,  that  has  to  be  fine  tuned  for  your  other  application

whereas, the knowledge gained in the previous application can be reused. And, that is the

concept  of  transfer  learning  and  we  have  also  talked  about  transfer  learning  in  our

previous lecture.

(Refer Slide Time: 03:29)

 So, in today’s lecture let us first with the discussion on some of the challenges that are

faced in deep learning or while  training the deep neural  network.  And, then we will

discuss about the other networks and while discussing them we will also see that how

such  challenge  or  some  of  these  challenges  are  addressed  in  the  networks  like

GoogleNet, ResNet and so on.



(Refer Slide Time: 04:09)

So,  first  let  us  see  that  what  are  the  challenges  in  deep  learning  or  deep  learning

challenges. So, one of the challenge is deep learning is data hungry; that means, if I train

a deep neural network I need thousands or even millions of data, millions of annotated

data for proper training of deep neural network. So, as we have seen earlier that this has

been done by data augmentation. This was the thing that we have seen earlier. So, how

do you augment data? By taking different crops of or different parts of your input data

set and multiplying the input data by taking crops from different regions.

There also you can do different types of transformations of the images which are there in

the training data set. The transformations can be reflection, the transformations can be

intensity variation, the transformations can be color distortion and so on. So, by applying

all these different types of operations on your input data set or training data set you can

multiply the size of your training data set and that is how even if I have limited data set

for training I can enlarge the data set which will be actually used for training purpose.

The other problem or other challenge that you have in deep neural network is that as the

number of parameters in the deep neural network is quite high so, it is quite likely that

the network will simply try to memorize the input pattern which were presented at the

time of training.  And, as it  tries to memorize it  does not it  may not really  learn the

representation  of  the data  right.  So,  as a  result  your  error during the training  or the

training error may be quite low, but when you actually apply your trained model to real



applications in that case the error that is generated may be quite high and that is what is

known as generalization error.

And, a problem that you face is known as over overfitting problem and this overfitting

problem is  due to  lack of  generalization.  So,  we have also seen when we discussed

earlier  say for example,  when I  discussed our auto encoder. We have seen that  auto

encoder has a layer known as bottleneck layer and the purpose of this bottleneck layer is

when you are training the auto encoder, then the information flows through the on auto

encoder through a restriction through a constriction as a result the inter information does

not flow from the input to output and that prevents the auto encoder from memorizing

your input pattern or input data.

So, auto encoder in such cases are forced to learn the features the important features of

the input data and using that important features it should be able to reconstruct the input

data.  Similarly, we have.  So,  this  is  one of the way in which the overfitting  can be

avoided or the network is forced to learn the representation the network simply does not

simply try to memorize the input data which is presented at the time of training.

 The other kind of approaches that we have seen is by imparting some sort of constants a

activation constant that also we have seen when we have discussed about training of the

auto encoders. In the same manner there are various other ways in which this overfitting

problem can be avoided. During training we can feed in the noisy data. So, from the

noisy data the network actually turns to tries to learn the many fold right. So, that is

another way of limiting the overfitting problem.

Similarly, in one of the previous lectures we have also discussed about a concept called a

dropout. So, in case of dropout what you do is you choose some nodes in your network at

random during the training time and those nodes are simply omitted from the network.

So, as a result the network becomes more robust and as few of the nodes are omitted at

random with certain probability, the other nodes in the network they have to take the

responsibility  of learning in absence of those nodes which are omitted or which had

dropped. 

So, as a result your network becomes more robust. It learns the generalized features and

we can prevent the network from memorizing the input data. The other problem which is

quite common in deep neural network and in fact, this increases with the depth of the



network which is the vanishing or exploding gradient problem. So, as you have seen that

during training what we use is the gradient descent approach and the information flows

in the backward direction from output to input all the error information and while this

information flows in the backward direction in every layer the parameters or weights of

the network they are tuned or they are trained.

And, as the information flows from output to input side with depth of the network the

gradient of the error which is flown which flows from the output to the input side that

goes on reducing and at a certain time that may even vanish. We will discuss about this

vanishing or exploding gradient problem a bit later.

Then, the other challenge is the appropriate learning rate. We have said before that in

every  back  propagation  algorithm  or  gradient  descent  algorithm,  you  update  your

weights by an amount which is proportional to the gradient and while doing so, we have

mentioned that there is an learning rate which is we have represented by a symbol say

eta. So, if this learning rate is very high; that means, the parameters are updated quite fast

or the step that you take for updation of the parameters, the step size becomes very high.

And, as a result there is a risk of missing the minima and you can overshoot the minima

go to the other side. So, as a result you will have a number of oscillations before you can

actually come to the minimum point of the loss or it may also possible that the system

may actually diverge instead of converging to the minimum it will diverge. So, choice of

appropriate learning rate is another challenge in deep learning in training of the deep

neural network.

The other challenge is covariate shift. What is this covariate shift? You find that when we

talked about the back learning algorithm or gradient descent algorithm, usually the kind

of gradient descent version which is used is what is known as batch gradient descent or

mini batch gradient descent, where you take a mini batch of the set of samples or the set

of data which are given for the training purpose and you perform your gradient descent

operation on the with the samples available in the mini batch ok.

And,  now  when  you  shift  from  one  mini  batch  to  another  mini  batch  the  feature

distribution of one mini batch may be widely different from the feature distribution from

another mini batch, even if your objects or the targets remains the same. So, for example,

if I want to distinguish between cat and say flower; in one mini batch I have the images



of cats which are black and white and in another mini batch I have images of cats which

are colored.

So, when you extend the features,  when the convolutional neural network extract the

features  then  the  feature  distribution  with black  images  is  different  from the  feature

distributions with color images. So, though your objects remains the same that is in both

the  cases  your  database  contains  images  of  cats,  but  the  distribution  of  features  are

widely different. And, as a result it becomes for the neural network to settle on to a set of

parameters or it becomes difficult for the neural network to learn the features because the

feature distribution from batch to batch changes.

So, we will also discuss about in our later lectures that how to take care of such covariate

shift. And, similarly the other challenge that is quite common in while training the deep

neural network is what is effective training. That means, how we can make the training

operation of the neural network more efficient, when should we decide that the training

should be stopped or how we can make the training faster. So, these are the various

challenges in development of deep neural network or deep algorithms.

So, out of these two deep learning, I mean replication of data or augmentation of the

training data and as well as the overfitting problems these are the things which we have

already discussed in few of our previous lectures. Now, let us see what is this vanishing

or  exploding gradient  problem before,  we go for  discussion  of  other  neural  network

models like GoogleNet or ResNet or residual neural network.



(Refer Slide Time: 14:39)

So, what is this vanishing gradient or exploding gradient problem? So, it is expected that

or it was believed that as the depth of the neural network increases, the capacity of the

neural network also increases and the neural network learns more and more features and

more and more representations. So, as a result the performance of the neural network

should increase with the number of layers that you go on adding in your neural network

or with the depth of the neural network the performance of the neural network should

increase. But, the experiments have shown that it is not always true.

Say for example, here as we have shown in these two images that the test error and the

training error that may in fact, increase as you increase the number of layers in your deep

neural network. Say for example, here you find that with a network having 20 layers and

with  a  network  having  56  layers,  during  training  operation  though  with  number  of

iterations the error goes on reducing there is a trend of reducing error with the number of

iterations, but you will find that as the number of layers is increased from 20 to 56 the

training error has also increased substantially.

And, the same is also true with test error. When you test your train network, then also

though with iterations the train say is that the test error goes on reducing, but as you have

increased the number of layers from 20 to 20 fifth from 20 to 56 the test error has also

increased. So, what is the problem? What is the lacuna in it? So, one of the reason has

been attributed to the problem of vanishing gradient or exploding radiant.



(Refer Slide Time: 16:41)

Let us see what is this vanishing gradient or exploding gradient. So, for expand this to

explain this I have taken a simple network architecture having four different layers. So,

this  network having four different  layers  the first  layer  has  an activation  of f  1,  the

second layer has an activation f 2, third layer has an activation of f 3 and the fourth layer

has an activation of f 4.

Similarly, the connection weights to the first layer it is W 1, weight between the first

layer and the second layer is W 2, weight between the second layer and the third layer is

W 3 and wait between the third layer and the fourth layer is W 4. And, finally, I have

output from the fourth layer nodes. For simplicity we have assumed that all these are

scalars; that means, W 1 is a scalar instead of a vector, W 2 also is a scalar, W 3 is a

scalar, W 4 is a scalar and so on and this functions f 1, f 2, f 3, f 4 they are also scalar

functions; that means, the output activation that you get is also a scalar value.

So, given this type of architecture you find that the output of this network which is now a

function of the input X and all these weights W 1 to W 4. This I can write as output as f 4

of W 4 into f 3 of W 3 into f 2 of W 2 into f 1 of W 1 into x. So, this is your final output

and this nature of the output function we have also seen we have also discussed when we

discussed in our earlier lectures on the neural network.



(Refer Slide Time: 18:35)

So, for mathematical convenience I put it this way: W 1 into X I put it as argument theta

1, W 2 into f 1 of W 1 into ax I put it as argument theta 2, then W 3 into f 2 of theta 2 I

put it as argument theta 3 and then f 4 into f 3 of theta 3 I put it as argument theta 4. So,

this is simply put as for mathematical convenience.

(Refer Slide Time: 19:07)

And, accordingly the definitions of this theta arguments and the output will be like this.

Now, my output O becomes f 4 of theta 4. So, you just look over here the argument of f 4

is defined as theta 4. So, the final output that I get which is f 4 of theta 4. Similarly, theta



4 is f 3 W 4 into f 3 of theta 3; theta 3 is W 3 into f 2 of theta 2; theta 2 is W 2 into f 1 of

theta one and theta 1 is W 1 into X.

Now, when I do the back propagation learning or for doing that what I do is I have to

perform the gradient descent operation. Suppose, I wanted to update that weigh to W 1;

so, in order to do this I have to minimize or I had to take the gradient step that minimizes

the output error with respect to weight W 1. And, you remember that when we derived

this relation when we derived this equation we had a term del of O with del of W 1 or del

O del W 1.

And, now applying chain rule if I try to find out here that what is del O W del W 1 you

find that  the expression will  come out to be X into f  1 dash,  where f  1 dash is  the

derivative of f 1 into W 2 into f 2 dash or f 2 dash is again the derivative of f 2 into W 3

into f 3 dash into W 4 into del O del theta 4, where del or del theta 4 is the gradient of

output O with respect to theta 4. Similarly, if I take del O del O del W 2 that is the

gradient of output with respect to W 2 which will be useful when you try to update the

weight W 2 and that you see over here this is product of f 1 f 2 dash W 3 f 3 dash W 4

into del O del theta 4.

So,  just  by looking at  this  you find that  as you move towards the earlier  layers  for

updating the weights in the earlier layers your number of terms in this product that goes

on increasing and this product terms the number of terms in the product is the sequence

of W’s of the subsequent layers and the derivatives of the activations of the nodes of the

subsequent layers and that is what you get over here.

Now, come to your situation, that if I assume that my activation function in every layer

that is f 1, f 2, f 3, f 4 and so on they are sigmoidal function. So, if I use the activations to

be sigmoidal functions then you remember that the derivative of a sigmoidal function if

my if I represent my sigmoidal function as f then f prime is nothing, but f into 1 minus f

and the  value  of  this  will  be  maximum when the  argument  is  0;  that  means,  if  my

function is f X f dash X will be maximum at X equal to 0 and this maximum value is 1

by 4, you can just compute this and verify.

So, with sigmoidal functions this f 1 dash f 2 dash f 3 dash all of them will be 1 by 4

maximum, it may even be lesser than that. And, as we said that to initialize your network

before you start training the weights are initialized at random and typically when you



initialize the weights the weight  values are from a distribution with mean 0 and the

standard deviation of the variance equal to 1. So, all of these terms within this product,

they are less than 1. So, as a result when you take the product of all of them the product

will be even lesser and in fact, this product value goes on reducing exponentially.

So, as a result as the number of terms in this product goes on increasing that is as we are

moving towards the earlier layers of your deep neural network, the gradient term which

reaches there almost vanishes because this gradient term or the product term goes on

reducing exponentially. And as the gradient almost vanishes so, when I go for updation

by the equation; so, what was our updation equation? Updation equation was a W t plus

1 was W t that is your parameter value at the previous parameter value minus eta times

grad of W.

And, this term grad of W goes on using this reduces exponentially as you move towards

the earlier layers and when this almost becomes 0, your W t plus 1 and W t it remains

more or less same; that means, you hardly update your weight and this is what is the

problem of vanishing gradient right. So, and this problem increases it becomes very very

prominent with the depth of the network because as the depth of the network increases

the  terms  in  this  product  that  also  goes  on  increasing;  reducing  which  reduces  the

gradient which reaches the earlier early layers of the network and as a result the training

becomes more or less ineffective or there is no updation of the weights.

And,  here  we have  shown these  two expression just  to  emphasize  that  as  we move

towards the earlier layer the problem becomes more and more prominent. And, this is

what  is  your  vanishing  gradient  problem.  Just  the  reverse  is  the  exploding  radiant

problem you think of the situation that instead of every term in this product being less

than  0,  if  they  happen  to  be  greater  than  0.  In  that  case  that  gradient  will  explode

exponentially right that also you can do numerically. 

So, if the gradient explodes, then when you are trying to update your weight the updation

step will be very large indicating that it will lead to oscillation or even it may lead to

divergence instead of converging your algorithm will actually diverge. So, these are the

problems of vanishing gradient and exploding gradient. And, so, obviously, unless we

take  some  measure  to  restrict  or  to  arrest  this  vanishing  or  gradient  vanishing  or



exploding gradient problem, naturally the network will not perform well. So, one of the

ways in which this can be arrested is proper choice of your activation function.

(Refer Slide Time: 26:53)

So, as we have seen that in case of activation function if we use the sigmoidal activation

function it is gradient is always than 1, maximum value of the gradient is 1 by 4. So,

instead of sigmoidal activation function you can use the activation function ReLU or

rectified linear unit for which the gradient is 1. And, that is the reason that ReLU has

become very popular in modern neural networks than activation functions like sigmoidal

or tan hyperbolic.

The other thing is by appropriate choice of the weight if the weight becomes less than 1,

then  we have vanishing gradient  problem if  it  is  greater  than  1,  we have  exploding

radiant problem or in other words your algorithm becomes unstable or it oscillates ok.

So, when you choose the weights initially which are chosen at random with mean 0 and

the  standard  deviation  or  the  variance  equal  to  1,  how  do  you  choose  the  weights

initialize the weights in a larger network?

So, a thumb rule says that if in any layer I have a node and the number of nodes from

which this particular node is getting the input that is say N then while initializing these

weights these weights should be initialized with mean 0, but the variance now should be

1 by N or in many cases they use the variance to be 2 by N. So, that is how I have to



choose the weights at random and those randomly chosen weights are to be assigned to

these weights from the previous layer to this layer.

So, weight initialization is another determining factor which can tackle or which can

address the problem of vanishing gradient or exploding gradient. And, the other approach

is obviously, by using intelligent back propagation learning algorithm or by carefully or

intelligently designing your neural network.

So, with this we conclude our lecture today in our next lecture we will talk about the

GoogleNet and the resNet. And, we will see that what measures GoogleNet or the resNet

has taken to address this vanishing gradient problem.

Thank you.


